Skip to content

ValueError: The hardcoded shape for the number of rows in the image (8) isn't the run time shape (7) #21

@gom7745

Description

@gom7745

Error messages are shown below:

ERROR:blocks.main_loop:Error occured during training.

Blocks will attempt to run `on_error` extensions, potentially saving data, before exiting and reraising the error. Note that the usual `after_training` extensions will *not* be run$
 The original error will be re-raised and also stored in the training log. Press CTRL + C to halt Blocks immediately.
Traceback (most recent call last):
  File "./run.py", line 652, in <module>
    if train(d) is None:
  File "./run.py", line 501, in train
    main_loop.run()
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/main_loop.py", line 197, in run
    reraise_as(e)
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/utils/__init__.py", line 258, in reraise_as
    six.reraise(type(new_exc), new_exc, orig_exc_traceback)
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/main_loop.py", line 183, in run
    while self._run_epoch():
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/main_loop.py", line 232, in _run_epoch
    while self._run_iteration():
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/main_loop.py", line 253, in _run_iteration
    self.algorithm.process_batch(batch)
  File "/home/alexchang/ENV/local/lib/python2.7/site-packages/blocks/algorithms/__init__.py", line 287, in process_batch
    self._function(*ordered_batch)
  File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 871, in __call__
    storage_map=getattr(self.fn, 'storage_map', None))
  File "/usr/local/lib/python2.7/dist-packages/theano/gof/link.py", line 314, in raise_with_op
    reraise(exc_type, exc_value, exc_trace)
  File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 859, in __call__
    outputs = self.fn()
ValueError: The hardcoded shape for the number of rows in the image (8) isn't the run time shape (7).
Apply node that caused the error: ConvOp{('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('unrol$
_kern', 2),('unroll_patch', False),('imshp_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}(Elemwise{Composite{(i0 + (i1 * i2))}}[(0, 2)].0, f_9_$
)
Toposort index: 1201
Inputs types: [TensorType(float32, 4D), TensorType(float32, 4D)]
Inputs shapes: [(200, 192, 7, 7), (192, 192, 3, 3)]
Inputs strides: [(37632, 196, 28, 4), (6912, 36, 12, 4)]
Inputs values: ['not shown', 'not shown']
Outputs clients: [[Subtensor{int64::}(ConvOp{('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('un
roll_kern', 2),('unroll_patch', False),('imshp_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}.0, ScalarFromTensor.0), Subtensor{:int64:}(ConvOp{
('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('unroll_kern', 2),('unroll_patch', False),('imsh
p_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}.0, ScalarFromTensor.0)]]

Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
  File "./run.py", line 652, in <module>
    if train(d) is None:
  File "./run.py", line 411, in train
    ladder = setup_model(p)
  File "./run.py", line 182, in setup_model
    ladder.apply(x, y, x_only)
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 203, in apply
    noise_std=self.p.f_local_noise_std)
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 185, in encoder
    noise_std=noise)
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 350, in f
    z, output_size = self.f_conv(h, spec, in_dim, gen_id('W'))
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 452, in f_conv
    filter_size), border_mode=bm)

HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.

Original exception:
        ValueError: The hardcoded shape for the number of rows in the image (8) isn't the run time shape (7).
Apply node that caused the error: ConvOp{('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('unroll
_kern', 2),('unroll_patch', False),('imshp_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}(Elemwise{Composite{(i0 + (i1 * i2))}}[(0, 2)].0, f_9_W
)
Toposort index: 1201
Inputs types: [TensorType(float32, 4D), TensorType(float32, 4D)]
Inputs shapes: [(200, 192, 7, 7), (192, 192, 3, 3)]
Inputs strides: [(37632, 196, 28, 4), (6912, 36, 12, 4)]
Inputs values: ['not shown', 'not shown']
Outputs clients: [[Subtensor{int64::}(ConvOp{('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('un
roll_kern', 2),('unroll_patch', False),('imshp_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}.0, ScalarFromTensor.0), Subtensor{:int64:}(ConvOp{
('imshp', (192, 8, 8)),('kshp', (3, 3)),('nkern', 192),('bsize', 200),('dx', 1),('dy', 1),('out_mode', 'valid'),('unroll_batch', 5),('unroll_kern', 2),('unroll_patch', False),('imsh
p_logical', (192, 8, 8)),('kshp_logical', (3, 3)),('kshp_logical_top_aligned', True)}.0, ScalarFromTensor.0)]]

Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
  File "./run.py", line 652, in <module>
    if train(d) is None:
  File "./run.py", line 411, in train
    ladder = setup_model(p)
  File "./run.py", line 182, in setup_model
    ladder.apply(x, y, x_only)
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 203, in apply
    noise_std=self.p.f_local_noise_std)
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 350, in f
    z, output_size = self.f_conv(h, spec, in_dim, gen_id('W'))
  File "/home/alexchang/Course_105_1/ML/ML2016/ladder_og/ladder.py", line 452, in f_conv
    filter_size), border_mode=bm)

HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.

Do you have any idea?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions