Skip to content

Integrate Hugging Face summarization pipeline #14

@justinmadison

Description

@justinmadison

Summary

Add an abstractive summarization step so each article gets a short “TL;DR.”

Motivation

  • Helps end-users absorb long articles quickly.
  • Demonstrates multi-document summarization (e.g. daily digest).

Scope

None

Acceptance Criteria

  • summarize(text) produces a concise summary (<200 chars)
  • summarize_task(article_id) saves "summary" to the article record
  • CLI summarize command runs without errors and prints confirmation
  • Tests pass in CI and README clearly describes both execution paths

Additional Context

Details

  • Category: nlp
  • Priority: P1
  • Estimate: 2d
  • Dependencies:
    • Database connection module (nlp/db.py) in place
    • Articles already normalized and persisted

Tasks

  1. Add dependencies
    • Add transformers and torch to /nlp/requirements.txt.
  2. Core function signature
    • Define in /nlp/core.py:
      def summarize(text: str) -> str
      
  3. Celery task hook
    • In /nlp/tasks.py, register:
      @app.task
      def summarize_task(article_id: str) -> str
      
  4. CLI entrypoint
    • In /nlp/cli.py, expose:
      python -m nlp.cli summarize --article-id=<id>
      
  5. Tests & documentation
    • Unit test that summarize() returns a non-empty string under 200 chars.
    • Test that summarize_task() updates the DB with a "summary" field.
    • Update /nlp/README.md with:
      • Installation steps
      • How to run the Celery task
      • How to invoke the CLI command

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    Status

    Ready

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions