-
Notifications
You must be signed in to change notification settings - Fork 23
Open
Description
After Loading Magic Animate model, Magic Animate node starts to run. Then there is a Exception.
Error occurred when executing MagicAnimate:
Allocation on device 0 would exceed allowed memory. (out of memory)
Currently allocated : 6.82 GiB
Requested : 160.00 MiB
Device limit : 8.00 GiB
Free (according to CUDA): 0 bytes
PyTorch limit (set by user-supplied memory fraction)
: 17179869184.00 GiB
File "D:\stable_diffusion\ComfyUI\execution.py", line 153, in recursive_execute
output_data, output_ui = get_output_data(obj, input_data_all)
File "D:\stable_diffusion\ComfyUI\execution.py", line 83, in get_output_data
return_values = map_node_over_list(obj, input_data_all, obj.FUNCTION, allow_interrupt=True)
File "D:\stable_diffusion\ComfyUI\execution.py", line 76, in map_node_over_list
results.append(getattr(obj, func)(**slice_dict(input_data_all, i)))
File "D:\stable_diffusion\ComfyUI\custom_nodes\ComfyUI-MagicAnimate\nodes.py", line 253, in generate
sample = pipeline(
File "D:\python\python3.10\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\stable_diffusion\ComfyUI\custom_nodes\ComfyUI-MagicAnimate\libs\magicanimate\pipelines\pipeline_animation.py", line 699, in __call__
down_block_res_samples, mid_block_res_sample = self.controlnet(
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\stable_diffusion\ComfyUI\custom_nodes\ComfyUI-MagicAnimate\libs\magicanimate\models\controlnet.py", line 529, in forward
sample, res_samples = downsample_block(
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\diffusers\models\unet_2d_blocks.py", line 1086, in forward
hidden_states = attn(
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\diffusers\models\transformer_2d.py", line 315, in forward
hidden_states = block(
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\diffusers\models\attention.py", line 248, in forward
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\diffusers\models\attention.py", line 307, in forward
hidden_states = module(hidden_states, scale)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\python\python3.10\lib\site-packages\diffusers\models\attention.py", line 356, in forward
return hidden_states * self.gelu(gate)
From the code, I encountered the exception while running ControlNet. my notebook has only 8GB of VRAM. How much VRAM is required to run this workflow?
Metadata
Metadata
Assignees
Labels
No labels