Skip to content

AI research agent that helps users discover in-demand, automation-resistant roles and provides step-by-step resources to transition into them.

Notifications You must be signed in to change notification settings

DigitalCreationsCo/gocareerpath

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GoCareerPath

AI research agent that finds 4 well-paying, automation-complementary roles you can pivot to without resetting your career, and gives step-by-step resources to get there.


Overview

GoCareerPath is a research-first AI agent that scans web search and knowledge sources, compresses findings, and outputs a focused final report listing four practical career pivots tailored to the user's background. It prioritizes roles that are complementary to automation and provides step-by-step learning and job-transition resources.

Core capabilities:

  • Multi-provider LLM support via init_chat_model() (configurable in LangGraph Studio).
  • Structured research pipeline: summarization → research → compression → final report.
  • Pluggable search API support (default: Tavily) and full MCP compatibility.
  • Deployable as a web app (Vercel) with LangGraph Studio UI for control.

Tech stack

  • Node.js, Next.js, React
  • LangChain-style orchestration (LangGraph)
  • LLM providers: OpenAI (gpt-4.1, gpt-4.1-mini), Anthropic/Gemini, other providers via init_chat_model()
  • Search: Tavily (default), native web search integrations for Anthropic/OpenAI, MCP servers
  • Hosting: Vercel (web app)

How it works (high level)

  1. User input — background, skills, role preferences.
  2. Search / Research — research agent queries configured search tools (Tavily, web search, MCP).
  3. Summarization — summarizer model digests search results (default: openai:gpt-4.1-mini).
  4. Research pass — primary compound research using designated research model (default: openai:gpt-4.1).
  5. Compression — compress findings for concise evidence (default: openai:gpt-4.1).
  6. Final report — structured output: 4 role suggestions + rationale + step-by-step resources (default: openai:gpt-4.1).

Note: models must support structured outputs and tool-calling.


Default model roles

  • Summarization: openai:gpt-4.1-mini — condense search results
  • Research: openai:gpt-4.1 — power the search agent and deeper reasoning
  • Compression: openai:gpt-4.1 — compress intermediate findings
  • Final Report: openai:gpt-4.1 — generate the actionable final report

You can override these with any provider supported by init_chat_model() in LangGraph Studio.


Search API & Tooling

  • Default: Tavily search API
  • Native web search adapters for Anthropic and OpenAI
  • Full MCP compatibility for custom servers and enterprise data sources
  • Add new search tools by implementing the search adapter interface used by the research agent

Quickstart (developer)

# clone
git clone <repo-url>
cd go-career-path

# install
npm install

# env
cp .env.example .env
# set LLM_PROVIDER, LLM_API_KEY, TAVILY_API_KEY, MCP_ENDPOINT, NEXT_PUBLIC_VERCEL_URL, etc.

# dev
npm run dev        # Next.js dev server

# build + start
npm run build
npm run start

Configuration (important keys)

  • LLM_PROVIDER — provider id used by init_chat_model()
  • LLM_API_KEY — API key for chosen provider
  • TAVILY_API_KEY — Tavily search API key (if using default search)
  • MCP_ENDPOINT — optional MCP server endpoint for enterprise search
  • NEXT_PUBLIC_SITE_URL — Vercel/site URL for callbacks
  • RESEARCH_AGENT_CONFIG — agent-specific timeouts, tool settings, and output schema

Ensure chosen models support:

  • Structured output (JSON schema output)
  • Tool calling (if using tool-enabled reasoning)

Usage (end-user)

  • Via LangGraph Studio UI: configure model, run the research workflow, view the final report.
  • Via web app: Input background → run agent → download or view final report with role suggestions and stepwise resources.

Output schema (example)

{
  "report_version": "1.0",
  "candidate_roles": [
    {
      "title": "Role A",
      "monthly_pay_estimate": "range",
      "why_it_fits": "rationale",
      "skills_to_build": ["skill1","skill2"],
      "learning_path": ["link1","link2"],
      "first_step": "actionable step"
    }
  ],
  "confidence_scores": { "Role A": 0.87 },
  "sources": ["url1","url2"],
  "timestamp": "2025-11-03T00:00:00Z"
}

Agents should output JSON matching your configured schema.


Best practices & tips

  • Use stronger research models (e.g. gpt-4.1) for browsing and tool-enabled passes.
  • Constrain token budgets for summarization/compression to keep costs predictable.
  • Provide the agent with explicit role constraints (seniority, remote/on-site, industry) for targeted outputs.
  • Validate final resource links programmatically or via an automated checker before presenting as canonical guidance.

Roadmap

  • Fine-tune recommended learning tracks by industry and seniority.
  • Add resume/CV tailoring generator tied to selected pivot role.
  • Integrate verified course catalog & micro-credential connectors (Coursera, edX, LinkedIn Learning).
  • Expand MCP adapters for enterprise/private knowledge graphs.

Contributing

  • Fork, branch, and open PRs for feature work.
  • Implement new search adapters under /packages/search-adapters.
  • Add model provider connectors via init_chat_model() extensions.
  • Follow project linting, testing, and PR guidelines in CONTRIBUTING.md.

License

MIT


About

AI research agent that helps users discover in-demand, automation-resistant roles and provides step-by-step resources to transition into them.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 23