Skip to content

Kopal05/IDS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

Intrusion Detection System

Detecting network intrusion using various machine learning algorithms. Monitor a network or system for malicious activity and protects a computer network from unauthorized access from users, including perhaps insider. The intrusion detector learning task is to build a predictive model (i.e. a classifier) capable of distinguishing between ‘bad connections’ (intrusion/attacks) and a ‘good (normal) connections’.

DISCLAIMER ⚠️

The data used here comes up with no 100% guarantee. So, don't use it for making decisions. However, this project presents the idea that how we can use MACHINE LEARNING in tackling Cyber Security Threats and can save our systems from being corrupted.

Table of Contents

  1. Introduction
  2. Installation
  3. Dataset
  4. Algorithm
  5. Screenshots
  6. Contributing
  7. Contact

Introduction

Cyber Security is very important these days as everyone has systems and everyone is using internet and its services to do their work. In this kind of situations it is very important that we learn about some measures to tackle these threats.

Installation

git clone

Install the required dependencies using pip: pip install -r requirements.txt

Run the Jupyter Notebook or Python scripts to train models and make predictions.

Dataset

The dataset used in this project is taken from Kaggle : https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection

Algorithms

1.Logistic Regression 2.Decision Tree Classifier 3.K Neighbour Classifier

Results

1.Screenshot 2023-11-07 091132

2.Screenshot 2023-11-07 091156

3.Screenshot 2023-11-07 091209

Contributing

If you would like to contribute to any of my projects, please fork this repository and create a new branch for your changes. Once you are finished, please submit a pull request.

1.Fork the repository. 2.Create a new branch for your feature or bug fix. 3.Make your changes and commit them. 4.Push to your fork and submit a pull request to the main repository.

Contact 📞

If you have any doubt or want to contribute feel free to email me or hit me up on LinkedIn,Email.

About

IDS implementation of detecting a network as good or bad network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published