Skip to content

MaybeBio/Awesome-IDR-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome IDR Prediction: Labs & Tools

Awesome MIT License PR's Welcome

Repository Introduction

🤩 Welcome to our curated list of Computational Protein Intrinsic Disorder Prediction labs AND tools!

This repository is a specialized, community-maintained resource focused exclusively on computational prediction of Intrinsically Disordered Regions (IDRs)—a core subfield of IDR research. Unlike broad IDR hubs, it zeroes in on tools, methods, and labs that solve the critical challenge of identifying IDRs from protein sequences (residue-level disorder probability, segment-level disorder boundaries, or context-specific disorder).
Our focus is on actionable computational resources: every entry includes direct access to tools (web servers/GitHub repos), links to the labs driving innovation, and supporting publications to validate method credibility. Whether you are a student new to IDR prediction or a researcher seeking state-of-the-art tools for your analysis, this repo centralizes the resources you need to avoid redundant searches and accelerate your work.

📝 Note: The "Tools Section" of the list is based primarily on CAID (a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding).

⚠️ For any collected tool that lacks literature publication details (whether papers or preprints), the source of the information we selected is highly likely to be the CAID Competition/Leaderboard.

Contributing / 贡献指南

EN

  • Keep README entries short: Paper, 1‑line Abstract, 1‑line Model/Method, and Access.
  • Put long Abstract/Method into docs/<surname>-lab.md with headings “ToolName Abstract” and “ToolName Model/Method”; link from README with “Read more →”.
  • For unpublished tools, add a Note (⚠️ No peer‑reviewed publication yet; status: experimental) and cite a verifiable source (e.g., preprint or CAID).
  • Include at least one working Access item (Web, GitHub, Docker, API docs, bio.tools, PyPI).
  • Use lowercase hyphenated anchors; create/update docs/<surname>-lab.md for new labs.

中文

  • README 保持精简:Paper、1 行 Abstract、1 行 Model/Method、Access。
  • 长内容放到 docs/<surname>-lab.md,用 “ToolName Abstract / ToolName Model/Method” 标题,并在 README 用 “Read more →” 链接。
  • 未发表工具加 Note(⚠️ 未经同行评审;实验性)并注明可核实来源(preprint / CAID)。
  • 至少提供一个可访问资源(Web/GitHub/Docker/API/bio.tools/PyPI 等)。
  • 标题/锚点用小写连字符;新增实验室请新建/更新对应 docs/<surname>-lab.md

⚠️ Use the PR template when submitting: .github/pull_request_template.md.

Table of Contents

Quick links:

Maintenance note: Quick links use GitHub heading anchors. Slugs are lowercase with hyphens; accents are stripped (ü → u, ö → o) while CJK stays as-is. When adding a new school, ensure a “#### University …” heading exists, then add it here using its slug. For entries without a heading inside details, add a small heading above to enable linking.

North America

United States

Washington University in St. Louis

Alex S. Holehouse

Virginia Commonwealth University

Lukasz Kurgan

Toyota Technological Institute at Chicago

Jinbo Xu 许锦波

University of New Orleans

Md Tamjidul Hoque

University of Missouri

Jianlin (Jack) Cheng 程建林

Temple University

Zoran Obradovic

Canada

University of British Columbia

Nawar Malhis

South America

Argentina

IIBIO, CONICET-UNSAM

Lucia Beatriz Chemes

EMEA

United Kingdom

University College London

David T. Jones

University of Exeter

Zheng Rong Yang

University of Cambridge

Michele Vendruscolo

Germany

Humboldt-Universität zu Berlin

Rune Linding

Technical University of Munich

Burkhard Rost

Hungary

Eötvös Loránd University

Zsuzsanna Dosztányi

Italy

University of Padua

Silvio C. E. Tosatto

Belgium

Vrije Universiteit Brussel

Wim Vranken

Poland

Silesian University of Technology

Katarzyna Stapor

Ireland

University College Dublin

Gianluca Pollastri

France

Sorbonne University

Isabelle Callebaut

Sweden

Linköping University

Björn Wallner

Asia

China

Beijing Institute of Technology 北京理工大学

Bin Liu 刘滨

Central South University 中南大学

Min Li

Sun Yat-sen University 中山大学

Yuedong Yang 杨跃东

Institute for Systems and Physical Biology, Shenzhen Bay Laboratory

Yaoqi Zhou 周耀旗

Japan

Maebashi Institute of Technology

Satoshi Fukuchi

Russia

Institute of Protein Research, RAS

Oxana Valerianovna Galzitskaya

North Korea

University of Sciences, Pyongyang

Kun-Sop Han

TODO: model graph

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •