Frameon extends pandas DataFrame with analysis methods while keeping all original functionality intact.
- Seamless integration: Works with existing pandas DataFrames and Series
- Non-intrusive: All pandas methods remain unchanged and fully available
- Modular access: Additional functionality organized in clear namespaces
- Dual-level access: Methods available for both entire DataFrames and individual columns
β Recommended: Use a virtual environment to prevent potential conflicts with existing package versions in your system.
pip install frameonpoetry add frameon# Create virtual environment
python -m venv frameon_env
# Activate it
source frameon_env/bin/activate
# Install frameon
pip install frameon# Navigate to your project directory
poetry init # if starting new project
poetry add frameonimport pandas as pd
from frameon import FrameOn as fo
# Create or load your DataFrame
df = pd.read_csv('your_data.csv')
# Add Frameon functionality
df = fo(df)
# Explore your data
df.explore.info() # For entire DataFrame
df['price'].explore.info() # For individual columnFor complete documentation including API reference and more examples, visit:
Frameon Documentation
Quickly explore your data:
from frameon import load_dataset, FrameOn as fo
titanic = fo(load_dataset('titanic'))
titanic['age'].explore.info()Quickly visualize user retention with a cohort heatmap:
from frameon import load_dataset, FrameOn as fo
superstore = fo(load_dataset('superstore'))
fig = superstore.analysis.cohort(
user_id_col='Customer ID',
date_col='Order Date',
revenue_col='Sales',
granularity='quarter',
include_period0=False,
)
fig.show()Compare groups using bootstrap:
from frameon import load_dataset, FrameOn as fo
titanic = fo(load_dataset('titanic'))
titanic.stats.bootstrap(
dv='age',
between='alive',
reference_group='no',
statistic='mean_diff',
plot=True
)Frameon provides methods through these namespaces:
| Namespace | Description | DataFrame | Series |
|---|---|---|---|
.explore |
Data exploration and quality checks | β | β |
.preproc |
Data preprocessing and cleaning | β | β |
.analysis |
Advanced analytical methods | β | β |
.viz |
Visualization methods | β | β |
.stats |
Statistical tests and analysis | β | β |
Frameon utilizes these foundational libraries:
- pandas - Core data structures
- numpy - Numerical computing
- plotly - Interactive visualization
- scipy - Scientific computing
- statsmodels - Statistical modeling
- pingouin - Statistics
- scikit-learn - Machine learning
We welcome contributions! Here's how to help:
- π Report bugs via GitHub Issues
- π₯ Submit PRs for new features
- π Improve documentation
See our Contributing Guidelines for details.
Frameon is licensed under the MIT License.


