Skip to content

Rohanpawar9921/DSA-Preparation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MY DSA PROGRESS

A comprehensive Data Structures and Algorithms learning repository with organized solutions, implementations, and practice problems across multiple DSA topics.


📚 Table of Contents

  1. Loops
  2. Patterns
  3. Functions
  4. Arrays
  5. 2D Arrays
  6. Strings
  7. Sorting
  8. Bit Manipulation
  9. ArrayList
  10. OOPs
  11. Recursion
  12. Divide and Conquer
  13. Backtracking
  14. Linked Lists
  15. Stacks
  16. Queues
  17. Greedy Approach
  18. Binary Trees
  19. Heaps
  20. Hashing
  21. Maths for DSA
  22. Binary Search Trees
  23. Tries
  24. Graphs
  25. Dynamic Programming
  26. Segment Trees
  27. Codeforces Problems
  28. Practice Questions

1. LOOPS

# Problem File Description
1 Loop Fundamentals 1.LOOPS Basic loop constructs and iterations

Notes:

  • Foundation for all iterative algorithms
  • Essential for understanding time complexity

2. PATTERNS

Patterns 1 & Patterns 2

# Topic Description
1 Number Patterns Pyramid and triangle patterns
2 Star Patterns Various star arrangements
3 Hollow Patterns Box and hollow rectangle patterns
4 Diamond Patterns Diamond shaped outputs

Key Concepts:

  • Nested loops for 2D pattern generation
  • Understanding row and column relationships
  • Print statement optimization

3. FUNCTIONS

# Concept Description
1 Function Declaration Basic function syntax
2 Parameters & Return Passing arguments and returning values
3 Method Overloading Multiple functions with same name
4 Scope & Variables Local and global scope

4. ARRAYS

# Problem Approach Time Space
1 Array Basics Direct access using indices O(1) O(1)
2 Linear Search Traverse and find O(n) O(1)
3 Binary Search Divide and conquer on sorted array O(log n) O(1)
4 Prefix Sum Array preprocessing O(n) O(n)
5 Subarray Problems Range queries optimization O(n) O(n)

Key Algorithms:

  • Array traversal patterns
  • Two-pointer technique
  • Sliding window approach

5. 2D_ARRAY

# Problem Key Technique Difficulty
1 Matrix Search 2D traversal Easy
2 Matrix Rotation In-place rotation Medium
3 Diagonal Sum Pattern recognition Easy
4 Row-wise & Column-wise Search Optimization Medium

Approaches:

  • Nested loops for 2D traversal
  • Starting from corners for optimized search
  • Spiral matrix traversal patterns

6. STRING

# Problem Algorithm Complexity
1 String Basics Character array operations O(n)
2 Palindrome Check Two pointer O(n)
3 Anagram Sorting/Hashing O(n log n) / O(n)
4 String Compression Character frequency O(n)
5 Pattern Matching KMP/Naive O(n+m)

Key Concepts:

  • Immutability of strings
  • Character frequency counting
  • String manipulation techniques

7. SORTING

Algorithm File Time Complexity Space Stable
Bubble Sort 7.Sorting/ O(n²) O(1) Yes
Selection Sort 7.Sorting/ O(n²) O(1) No
Insertion Sort 7.Sorting/ O(n²) O(1) Yes
Merge Sort 7.Sorting/ O(n log n) O(n) Yes
Quick Sort 7.Sorting/ O(n log n) avg O(log n) No
Counting Sort 7.Sorting/ O(n+k) O(k) Yes
Radix Sort 7.Sorting/ O(nk) O(n+k) Yes

Important Notes:

  • Merge sort guaranteed O(n log n), stable
  • Quick sort fastest average case, in-place
  • For small arrays, insertion sort often fastest in practice
  • Counting sort for limited range of integers

8. BIT MANIPULATION

# Problem Technique Use Case
1 Check Bit (n >> i) & 1 Verify if bit set
2 Set Bit n | (1 << i) Set i-th bit to 1
3 Unset Bit n & ~(1 << i) Set i-th bit to 0
4 Toggle Bit n ^ (1 << i) Flip i-th bit
5 Count Bits Brian Kernighan's Algorithm Count set bits
6 Power of 2 (n & (n-1)) == 0 Check if power of 2
7 XOR Properties a ^ a = 0, a ^ 0 = a Swap without temp

Key Insights:

  • XOR used for finding single element in pairs
  • Bit masking for efficient storage
  • Bitwise operations faster than arithmetic

9. ARRAYLIST

16.arraylist/pairsum2.java

Problem: Pair Sum in Rotated Sorted Array

Input: [11, 15, 6, 8, 9, 10], target = 16
Output: Find pair that sums to target
Aspect Details
Algorithm Two Pointer on Rotated Array
Approach Find pivot point → Use circular two pointers
Time Complexity O(n)
Space Complexity O(1)
Key Insight In rotated sorted array, find breaking point then apply two pointer

Code Explanation:

  • Find index j where arr[j] > arr[j+1] (breaking point)
  • Right Pointer (RP) = j, Left Pointer (LP) = j+1
  • Use modulo arithmetic to wrap around
  • Move LP forward if sum too small, RP backward if sum too large

Key Formula:

LP = (LP + 1) % n  // Move forward with wrapping
RP = (n + RP - 1) % n  // Move backward with wrapping

10. OOPS

10.OOPs/abstraction.java

Concept Implementation Purpose
Encapsulation Private fields, Public getters/setters Hide internal details
Inheritance extends keyword Code reusability
Polymorphism Method overriding Runtime behavior change
Abstraction Abstract classes & interfaces Define contracts

Key Topics:

  • Classes and Objects
  • Access Modifiers (public, private, protected)
  • Constructors and Destructors
  • Static vs Instance members
  • Abstract methods and classes
  • Interfaces and implementations

11. RECURSION

12.Reccursion-1

Basic Recursion Concepts:

Problem Pattern Approach
Factorial Mathematical Base case: n==0, return 1
Fibonacci Overlapping subproblems Memoization for optimization
Power Divide & Conquer f(n) = f(n/2) * f(n/2)
Sum of Array Linear Recursion Sum = first + sum(rest)

13.Reccursion-2

13.Reccursion-2/tilingProblem.java

Problem: Tiling a 2×n Board with 1×2 Tiles

For n=4:
Possible tilings = 5

Recurrence: f(n) = f(n-1) + f(n-2)
Aspect Details
Problem How many ways to tile 2×n board with 1×2 tiles?
Recurrence f(n) = f(n-1) + f(n-2)
Base Cases f(0)=1, f(1)=1
Time Complexity O(2^n) - Exponential
Optimization Use DP - O(n)
Space Complexity O(n) with DP

Intuition:

  • At position n, we can place either:
    • One vertical tile (1×2) → remaining n-1
    • Two horizontal tiles (1×1 each rotated) → remaining n-2
  • Total = f(n-1) + f(n-2)

Example:

n=1: 1 way (one vertical)
n=2: 2 ways (two vertical OR two horizontal)
n=3: 3 ways
n=4: 5 ways

12. DIVIDE AND CONQUER

Algorithm Problem Complexity Strategy
Merge Sort Sorting O(n log n) Split + Merge
Quick Sort Sorting O(n log n) avg Partition + Recurse
Binary Search Search Sorted O(log n) Split space in half
Strassen Matrix Mult O(n^2.81) Smart multiplication

13. BACKTRACKING

Problem Approach Time Space
N-Queens Place queens safely O(N!) O(N)
Sudoku Fill valid digits Exponential O(1)
Permutations Generate all O(N!) O(N)
Combinations Generate subsets O(2^N) O(N)
Maze Find path Exponential O(N²)

Key Pattern:

  1. Choose → Explore → Unchoose (Backtrack)
  2. Maintain constraints/visited state
  3. Early termination on invalid state

14. LINKED LISTS

17.LinkedList-1/LinkedList.java

Basic Linked List Operations:

Operation Code Time Space
Add First Insert at head O(1) O(1)
Add Last Insert at tail O(1) O(1)
Print LL Traverse all nodes O(n) O(1)
Remove First Delete from head O(1) O(1)
Search Linear search O(n) O(1)
Reverse Reverse pointers O(n) O(1)

18.LinkedList-2/LinkedList.java

Advanced Operations:

Operation Complexity Notes
addAtIndex(int idx) O(n) Insert at specific position
removeStart() O(1) Delete from beginning
removeEnd() O(n) Delete from end
removeAtIndex(int idx) O(n) Delete at specific index

18.LinkedList-2/mergeSortInLL.java

Problem: Merge Sort on Linked List

Input: 3 -> 2 -> 5 -> 1 -> null
Output: 1 -> 2 -> 3 -> 5 -> null
Aspect Details
Algorithm Merge Sort using slow & fast pointers
Get Middle Slow pointer moves 1 step, fast moves 2 steps
Divide Split list into two halves recursively
Merge Merge two sorted lists
Time Complexity O(n log n)
Space Complexity O(log n) - Recursion stack

Key Steps:

  1. Find middle using slow/fast pointers
  2. Recursively sort left and right halves
  3. Merge two sorted halves in-order

Advantages over Array Merge Sort:

  • No extra O(n) space for merging (in-place merge)
  • Works efficiently for linked structures

15. STACKS

19.Stack-1/stackBasic.java

Stack Using ArrayList:

Stack Operations:
- isEmpty(): O(1)
- peek(): O(1)
- push(data): O(1) amortized
- pop(): O(1) amortized
Method Implementation Purpose
isEmpty() list.size() == 0 Check if empty
peek() list.get(size-1) View top element
push() list.add() Add to top
pop() list.remove(size-1) Remove from top

19.Stack-1/stackLL.java

Stack Using Linked List:

Advantage Benefit
No pre-allocation Dynamic sizing
Better for sparse No wasted space
Intrinsic Operations are O(1)

Implementation Details:

  • Head acts as top of stack
  • Push: Insert at head O(1)
  • Pop: Remove from head O(1)
  • Peek: Access head data O(1)

Stack Applications

Application Use Case Example
Expression Evaluation Infix to Postfix Calculator
Backtracking Undo/Redo Text Editor
Function Calls Call Stack Program Execution
DFS Graph Traversal Topological Sort
Balanced Parentheses Validation Compiler

16. QUEUES

Operation Complexity Implementation
Enqueue O(1) Add to rear
Dequeue O(1) Remove from front
Peek O(1) View front
isEmpty O(1) Check size

Types of Queues:

Type Properties Use Case
Simple Queue FIFO Standard queue operations
Circular Queue Efficient space Fixed buffer
Deque FIFO from both ends Sliding window
Priority Queue Min/Max heap Task scheduling

Applications:

  • BFS graph traversal
  • Job scheduling
  • Print queue management
  • Round-robin CPU scheduling

17. GREEDY APPROACH

22.Greedy Approch/lexographicallySmallest.java

Problem: Lexicographically Smallest String of Length n with Sum k

Aspect Details
Problem Generate smallest string of length n where char sum = k
Approach Greedy: Fill from end with largest chars possible
Algorithm Start with 'a's, from right add (z's) as needed
Time Complexity O(n)
Space Complexity O(n) for result array

Key Insight:

  • To get lexicographically smallest: prefer 'a' at front
  • Fill from end with larger characters
  • Each position i needs character such that: char_value + remaining_sum ≥ k

Algorithm:

1. Initialize all characters as 'a'
2. Start from right (index n-1)
3. For each position, calculate available sum
4. Insert largest character that fits
5. Update remaining sum

Example:

n=5, k=15
Start: aaaaa
From right, need sum=15:
- pos 4: can use 'z'(26)? No, adjust
- Fill strategically to get smallest string
Result: aabbb (1+1+2+2+2=8) or similar

Greedy Strategy Applications:

  • Activity Selection
  • Huffman Coding
  • Fractional Knapsack
  • Coin Change
  • Job Sequencing

18. BINARY TREES

23.Binary Trees/BinaryTreeB.java

Tree Traversals:

Traversal Pattern Use Case Order
Preorder Root-Left-Right Copy tree, Prefix expression Node before children
Inorder Left-Root-Right BST sorting, Infix expression Node between children
Postorder Left-Right-Root Delete tree, Postfix expression Children before node
Level Order BFS Level-wise processing Layer by layer

Time Complexity: O(n) for all traversals Space Complexity: O(h) where h = height (recursion stack)

23.Binary Trees/CheckUnivaluated.java

Problem: Check if Tree Contains Duplicate Values

Input: Tree with nodes: 1, 2, 3, 4, 5, 6, 8
Output: false (all unique)
Aspect Details
Algorithm DFS with ArrayList tracking
Approach Visit each node, check if value seen before
Time Complexity O(n)
Space Complexity O(n) for ArrayList + O(h) for recursion
Returns true if duplicate found, false if all unique

Logic:

1. If node exists in list → duplicate found (return true)
2. Else → add to list
3. Check left subtree recursively
4. Check right subtree recursively
5. If either subtree has duplicate → return true

23.Binary Trees/LowestCommonAncestor.java

Problem: Find Lowest Common Ancestor (LCA)

Input: Tree, n1=4, n2=5
       1
      / \
     2   3
    / \
   4   5
   
Output: 2 (LCA of 4 and 5)
Aspect Details
Algorithm Find paths to both nodes, compare
getPath() DFS to find path from root to node
LCA Finding Compare paths, last common node = LCA
Time Complexity O(n) for path finding + O(h) for comparison
Space Complexity O(h) for paths and recursion

Approach:

  1. Find path from root to n1
  2. Find path from root to n2
  3. Compare paths until divergence
  4. Last common node before divergence = LCA

23.Binary Trees/MinDistanceBetweenTwoNodes.java

Problem: Minimum Distance Between Two Nodes

Distance = distance(n1 to LCA) + distance(LCA to n2)
Aspect Details
Algorithm Find LCA + calculate distances
LCA2() Optimized LCA finding
dist() Calculate distance from node to target
Time Complexity O(n)
Space Complexity O(h) recursion depth
Key Formula Total Distance = dist(LCA to n1) + dist(LCA to n2)

Optimized LCA (LCA2):

  • If node is null or matches n1 or n2 → return node
  • Check left and right subtrees
  • If both subtrees have values → current is LCA
  • If only one → return that one

23.Binary Trees/transformingToSumTree.java

Problem: Transform Binary Tree to Sum Tree

Original:      1              Transform:        15
              / \                              /  \
             2   3                           5    5
              \                               \
               4                              9
                \                              \
                 5                             5

Each node = sum of all elements in its subtree
Aspect Details
Algorithm Post-order traversal with accumulation
Approach Visit children first, then update node
Time Complexity O(n) - visit each node once
Space Complexity O(h) - recursion stack
Key Insight Store old value before updating

Algorithm:

1. Recursively transform left subtree
2. Recursively transform right subtree
3. Store old node value
4. Update node = leftSum + rightSum
5. Return old value + updated node value

Return Value Logic:

  • Returns total sum including current node's original value
  • Used by parent node in recursion

19. HEAPS

Heap Type Property Use Case Extraction
Min Heap Parent ≤ Children Find minimum Smallest first
Max Heap Parent ≥ Children Find maximum Largest first
Priority Queue Custom priority Task scheduling Highest priority

Operations:

Operation Time Complexity Space
Insert O(log n) O(1)
Delete Min/Max O(log n) O(1)
Heapify O(n) O(1)
Get Min/Max O(1) O(1)

Applications:

  • Dijkstra's Algorithm
  • Huffman Coding
  • Heap Sort
  • K-th Largest Element
  • Median in Stream

20. HASHING

Structure Average Worst Use
Hash Table O(1) O(n) General lookup
HashMap O(1) O(n) Key-value pairs
HashSet O(1) O(n) Unique elements
LinkedHashMap O(1) O(n) Insertion order

Collision Handling:

Technique Method Pros Cons
Chaining Linked list at each bucket Simple Extra space
Open Addressing Linear/Quadratic probing Space efficient Clustering
Double Hashing Two hash functions Better distribution Complex

Applications:

  • Duplicate detection
  • Frequency counting
  • Two-sum problems
  • Anagram grouping
  • Cache implementation

21. MATHS FOR DSA

Topic Application Complexity
GCD/LCM Fraction simplification O(log min(a,b))
Prime Numbers Sieve of Eratosthenes O(n log log n)
Modular Arithmetic Large number handling O(1) per operation
Combinatorics Permutation/Combination O(n) to O(2^n)
Number Theory Divisors, Factors O(√n)

Key Formulas:

nCr = n! / (r! × (n-r)!)
nPr = n! / (n-r)!
Euler's Theorem: a^φ(n) ≡ 1 (mod n)
Fermat's Little Theorem: a^(p-1) ≡ 1 (mod p) for prime p

22. BINARY SEARCH TREES

27.binary Search Trees/BSTBasics.java

BST Property: Left < Root < Right

Operation Algorithm Time Space
Search Divide search space in half O(log n) avg, O(n) worst O(log n)
Insert Find position, add node O(log n) avg, O(n) worst O(log n)
Delete Handle 3 cases O(log n) avg, O(n) worst O(log n)

Delete Cases:

Case 1: Leaf node
   → Simply remove

Case 2: One child
   → Replace with child

Case 3: Two children
   → Replace with inorder successor (leftmost in right subtree)
   → Delete inorder successor

printInRange(int k1, int k2):

  • Prints all values in range [k1, k2]
  • Time: O(m) where m = nodes in range
  • Space: O(h) recursion depth
  • Strategy: Skip left if value > k2, skip right if value < k1

27.binary Search Trees/MergeBST.java

Problem: Merge Two BSTs

BST1:    2        BST2:     1
        / \                / \
       1   3              0   5

Merged (sorted): 0, 1, 1, 2, 3, 5
Step Operation Complexity
Inorder Traversal Get sorted array from each BST O(m) + O(n)
Merge Arrays Merge two sorted arrays O(m + n)
Build BST Create balanced BST from sorted O(m + n)

Time Complexity: O(m + n) Space Complexity: O(m + n) for arrays

27.binary Search Trees/ConvertToBST.java

Problem: Convert Binary Tree to Balanced BST

Phase Operation Purpose
Get Sorted Inorder traversal to ArrayList Extract elements in order
Build Balanced Recursive middle selection Create balanced structure
Connect Nodes Recursively build left/right O(n) total connections

balanceBST Recursion:

For array [0,1,2,3,4]:
- mid = 2, root = 2
- left = build(0,1)
- right = build(3,4)
- Balanced tree created

Advantages:

  • O(log n) search guaranteed
  • Prevents degenerate trees
  • Optimal height = O(log n)

23. TRIES

Operation Complexity Use Case
Insert O(m) - length of word Add word to dictionary
Search O(m) Find exact word
StartsWith O(m) Prefix matching
Delete O(m) Remove word

Structure:

  • Root node (empty)
  • 26 children per node (for lowercase letters)
  • isEndOfWord flag

Applications:

  • Autocomplete
  • Spell checker
  • IP routing
  • Phone directory
  • Search engines

24. GRAPHS

29. Graph/a_GraphBasics.java

Graph Representation:

Method Space Edge Lookup Use When
Adjacency Matrix O(V²) O(1) Dense graphs
Adjacency List O(V+E) O(degree) Sparse graphs
Edge List O(E) O(E) Iteration heavy

Edge Structure:

class Edge {
    int src;      // Source vertex
    int dest;     // Destination vertex
    int wt;       // Weight
}

29. Graph/c_connected_component.java

Problem: Find Connected Components

Graph with 2 components:
Component 1: {0, 1, 2, 3}
Component 2: {4}
Aspect Details
Algorithm DFS/BFS from each unvisited node
Time Complexity O(V + E)
Space Complexity O(V) for visited array + O(E) for graph
Purpose Identify disconnected subgraphs

Applications:

  • Network analysis
  • Social networks (friends groups)
  • Image processing (blob detection)

Graph Algorithms:

Algorithm Time Space Purpose
BFS O(V+E) O(V) Shortest path (unweighted)
DFS O(V+E) O(V) Connectivity, cycles
Dijkstra O((V+E)logV) O(V) Shortest path (weighted, positive)
Bellman-Ford O(VE) O(V) Shortest path (negative edges)
Floyd-Warshall O(V³) O(V²) All-pairs shortest path
Kruskal O(E log E) O(V) Minimum spanning tree
Prim O(V²) or O((V+E)logV) O(V) Minimum spanning tree
Topological Sort O(V+E) O(V) Directed acyclic graphs

25. DYNAMIC PROGRAMMING

DP Strategy: Optimal Substructure + Overlapping Subproblems

Approach Method When to Use
Top-Down Recursion + Memoization Natural recursive structure
Bottom-Up Iteration + Tabulation Want to avoid recursion

Classic Problems:

Problem Subproblems Time Space
Fibonacci f(n) = f(n-1) + f(n-2) O(n) O(n)
0/1 Knapsack Include/exclude items O(nW) O(nW)
LCS Match characters O(mn) O(mn)
Edit Distance Insert/delete/replace O(mn) O(mn)
Coin Change Min coins to make amount O(nA) O(n)
Longest Increasing Subsequence Include/skip elements O(n²) or O(n log n) O(n)

Memoization Techniques:

  • HashMap for irregular states
  • Array for indexed states
  • 2D arrays for two-parameter problems

26. SEGMENT TREES

31.Segment Trees/a_basics.java

Problem: Range Sum Query with Updates

Operation Complexity Implementation
Build Tree O(n) Initialize segment tree
Query O(log n) Get sum in range
Update O(log n) Update single element

Segment Tree Structure:

Array: [1, 2, 3, 4]
Tree (array indices): Position 0 = root, 2i+1 = left, 2i+2 = right

    10 (sum of all)
    /  \
   3    7
  / \  / \
 1  2  3  4

buildST() - Build Tree:

- Recursive division of range
- Base case: si == sj (single element)
- Combine left and right sums
- Time: O(n)

getSumUtil() - Query:

- If range outside query → return 0
- If range inside query → return tree[i]
- Else partial overlap → split and combine
- Time: O(log n)

updateSTUtil() - Update:

- Update affected tree nodes on path to root
- Difference propagation
- Time: O(log n)

31.Segment Trees/b_MinMaxST.java

Problem: Range Min/Max Query

Operation Modification
Min Query Use Math.min() instead of sum
Max Query Use Math.max() instead of sum
Combine min(left, right) or max(left, right)

Applications:

  • Sparse table preprocessing
  • 2D range queries
  • Finding kth element in range

27. CODEFORCES PROBLEMS

Problem Type Difficulty Algorithm
TBD - - -

Note: Add your Codeforces solutions with problem codes and links


28. PRACTICE QUESTIONS

Source Level Topics Covered
LeetCode Mixed All DSA topics
InterviewBit Mixed DSA + Interview prep
HackerRank Beginner-Advanced All topics
GeeksforGeeks All Theory + Practice

📊 Quick Reference Matrix

Complexity Cheat Sheet

Operation Best Average Worst Space
Array Access O(1) O(1) O(1) O(n)
Array Search (unsorted) O(1) O(n) O(n) O(1)
Binary Search O(1) O(log n) O(log n) O(1)
Linear Search O(1) O(n) O(n) O(1)
Bubble Sort O(n) O(n²) O(n²) O(1)
Merge Sort O(n log n) O(n log n) O(n log n) O(n)
Quick Sort O(n log n) O(n log n) O(n²) O(log n)
Hash Insert O(1) O(1) O(n) O(n)
BST Insert O(log n) O(log n) O(n) O(log n)
Linked List Insert O(1) O(n) O(n) O(1)
Stack Push/Pop O(1) O(1) O(1) O(n)
Queue Enqueue/Dequeue O(1) O(1) O(1) O(n)

🎯 Learning Path Recommendations

Beginner Level

  1. Loops, Patterns, Functions
  2. Arrays, 2D Arrays
  3. Strings, Basic Sorting
  4. ArrayList Basics

Intermediate Level

  1. Bit Manipulation
  2. Sorting (All algorithms)
  3. Linked Lists
  4. Stacks & Queues
  5. OOPs Concepts

Advanced Level

  1. Recursion (Parts 1 & 2)
  2. Divide and Conquer
  3. Backtracking
  4. Binary Trees
  5. Heaps & Hashing
  6. Greedy Approach
  7. Binary Search Trees
  8. Tries
  9. Graphs

Expert Level

  1. Dynamic Programming
  2. Segment Trees
  3. Advanced Graph Algorithms
  4. Interview Problems

🚀 Performance Optimization Tips

Time Complexity Optimization:

  • Use hashing for O(n) lookup instead of O(n²)
  • Apply two-pointer technique on sorted arrays
  • Use segment trees for repeated range queries
  • Cache intermediate results (memoization)

Space Complexity Optimization:

  • In-place algorithms (reverse, sort)
  • Iterator patterns instead of loading all
  • Rolling hash for string problems
  • Stream processing for large data

📝 Common Patterns to Remember

Pattern When to Use Example
Two Pointers Sorted array, target sum Pair Sum
Sliding Window Substring/subarray problems Max window sum
Fast/Slow Pointers Cycle detection, middle finding Linked list middle
Recursion + Memoization Overlapping subproblems DP problems
BFS Level-order, shortest path Graph traversal
DFS All combinations, paths Backtracking
Prefix Sum Range sum queries Array queries
Divide & Conquer Sorting, power Merge sort, fast exponentiation

🔗 File Structure Summary

DATA STRUCTURES AND ALGORITHMS/
├── 1.LOOPS/                    → Basic iterations
├── 2.Patterns1/ & 4.Patterns2/ → Pattern printing
├── 3.functions/                → Function basics
├── 5.Array/                    → Array operations
├── 7.SORTING/                  → All sorting algorithms
├── 8.string/                   → String algorithms
├── 9.BitManipulation/          → Bit operations
├── 10.OOPs/                    → Object-oriented concepts
├── 12.Reccursion-1/            → Basic recursion
├── 13.Reccursion-2/            → Advanced recursion (Tiling, etc)
├── 16.arraylist/               → ArrayList operations (Pair Sum II)
├── 17.LinkedList-1/            → Basic LL (Add, Remove, Print)
├── 18.LinkedList-2/            → Advanced LL (Merge Sort)
├── 19.Stack-1/                 → Stack implementation
├── 20.Stack-2/                 → Stack applications
├── 21.Queue/                   → Queue operations
├── 22.Greedy Approch/          → Greedy algorithms
├── 23.Binary Trees/            → Tree problems (LCA, Sum Tree, etc)
├── 24.Heaps/                   → Heap data structure
├── 25.Hashing/                 → Hash tables & sets
├── 27.binary Search Trees/     → BST operations
├── 28. Tries/                  → Trie data structure
├── 29. Graph/                  → Graph algorithms
├── 30. DP/                     → Dynamic programming
├── 31.Segment Trees/           → Segment tree queries
└── Codeforces/ & Practice/     → Competitive problems

💡 Key Takeaways

  1. Master Time & Space Tradeoffs - Choose the right algorithm for constraints
  2. Understand Fundamentals - Strong basics make advanced topics easier
  3. Practice Implementation - Coding problems repeatedly builds muscle memory
  4. Analyze Complexity - Always calculate O(n) and O(space) before coding
  5. Learn Patterns - Recognize problem patterns to apply known solutions
  6. Debug Efficiently - Use test cases to validate logic
  7. Optimize Gradually - Get working solution first, then optimize

Last Updated: December 2024

Happy Learning! Keep solving, keep improving! 🎓

About

I will add my all progress of DSA here

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages