OpsGPT is a production-grade inference engine designed to serve Hugging Face LLMs (DistilGPT-2/SmolLM) with high availability and automated delivery.
I built this project to demonstrate a Split-Repository GitOps Strategy, separating application source code from configuration manifests to ensure security, auditability, and clean release cycles.
[ Badges here: CI Status | Python 3.10 | Docker ]
OpsGPT is a production-ready LLM inference engine deployed via Kubernetes.
- Install dependencies:
pip install -r requirements.txt - Run server:
uvicorn app.main:app --reload
- Add Redis Caching
- Implement Model Quantization
graph LR
A[Developer] -->|Push Code| B(opsgpt-app Repo)
B -->|GitHub Action| C{CI Pipeline}
C -->|Build & Test| D[Docker Registry]
C -->|Update Tag| E(opsgpt-gitops Repo)
E -->|Sync| F[ArgoCD]
F -->|Deploy| G[Kubernetes Cluster]
G -->|Scale| H[HPA]