Welcome to my GitHub page. I am currently working as a Lecturer at Naval University of Engineering, with research interests in remote sensing (hyperspectral, multispectral, SAR, optical images,...), multi-source fusion, and deep learning.
- [ICASSP 26'] Xiangfei Shen, Ke Li, Tao Liu, Qianqian Liu, Jianbin Lu, Yunlei Zhang, Yaoyao Liu, Juan Hu,. (2026). SSUN: Symmetric Cross-Stage State Interaction Deep Unrolling Network for Hyperspectral and Multispectral Image Fusion. In Proc. ICASSP. [pdf] [Code]
- [EAAI 26'] Yu, H., Wan, M., Chen, T., Peng, A., Shen, X., He, R., ... & Zhou, X. (2026). Multiscale wavelet-based spatial–spectral compression network for hyperspectral image. Engineering Applications of Artificial Intelligence, 164, 113241. [pdf] [Code]
- [J-Stars 25'] Shen, X., Chen, L., Liu, H., Zhou, X., Bao, W., Tian, L., ... & Chanussot, J. (2025). Iteratively Regularizing Hyperspectral and Multispectral Image Fusion With Framelets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. [pdf] [Code]
- [AAAI 25'] Su, X., Shen, X., Wan, M., Nie, J., Chen, L., Liu, H., & Zhou, X. (2025, April). EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 7, pp. 7033-7041). [pdf] [Code]
- [J-Stars 25'] Su, X., Shen, X., Liu, H., Chen, L., Vivone, G., & Zhou, X. (2025). Toward Model-Independent Separative Training for Deep Hyperspectral Anomaly Detection With Mask Guidance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. [pdf]
- [TGRS 24'] Liu, H., Su, X., Shen, X., & Zhou, X. (2024). MSNet: Self-supervised multiscale network with enhanced separation training for hyperspectral anomaly detection. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-13. [pdf] [Code]
- [GRSL 24'] Li, Q., Wang, C., Yu, L., Zhang, J., Zhang, L., Liu, K., & Shen, X. (*) (2024). Toward efficient hyperspectral anomaly detection with subspace transformation learning. IEEE Geoscience and Remote Sensing Letters, 21, 1-5. [pdf]
- [IJRS 24'] Zhang, J., Dong, H., Gao, W., Zhang, L., Xue, Z., & Shen, X. (*) (2024). Structured low-rank representation learning for hyperspectral sparse unmixing. International Journal of Remote Sensing, 45(2), 351-375. [pdf]
- [TGRS 23'] Zhou, X., Zou, X., Shen, X., Wei, W., Zhu, X., & Liu, H. (2023). BTC-Net: Efficient bit-level tensor data compression network for hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-17. [pdf]
- [TGRS 23'] Shen, X., Liu, H., Nie, J., & Zhou, X. (2023). Matrix factorization with framelet and saliency priors for hyperspectral anomaly detection. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-13. [pdf] [Code]
- [TGRS 23'] Shen, X., Chen, L., Liu, H., Su, X., Wei, W., Zhu, X., & Zhou, X. (2023). Efficient hyperspectral sparse regression unmixing with multilayers. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-14. [pdf] [Code]
- [IEEE GRSL 22'] Shen, X., Liu, H., Zhang, X., Qin, K., & Zhou, X. (2022). Superpixel-guided local sparsity prior for hyperspectral sparse regression unmixing. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. [pdf] [Code]
- [IEEE TGRS 22'] Shen X, Liu H, Qin J, et al. Toward weak signal analysis in hyperspectral data: An efficient unmixing perspective[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. [pdf] [Code]