Skip to content

AcinetoScope A Unified Pipeline for Comprehensive Acinobacter baumannii & Species Complex Genotyping & Epidemiology

License

Notifications You must be signed in to change notification settings

bbeckley-hub/acinetoscope

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

12 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🦠 AcinetoScope - The Ultimate A. baumannii Genomic Analysis Pipeline

 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ•—  β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β•β•β•šβ•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β•β•β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•
β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β–ˆβ–ˆβ•— β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—     β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—  
β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•     β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘β•šβ•β•β•β•β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ•‘   β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•”β•β•β•β• β–ˆβ–ˆβ•”β•β•β•  
β–ˆβ–ˆβ•‘  β–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘β–ˆβ–ˆβ•‘ β•šβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—   β–ˆβ–ˆβ•‘   β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•‘β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β•šβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•‘     β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—
β•šβ•β•  β•šβ•β• β•šβ•β•β•β•β•β•β•šβ•β•β•šβ•β•  β•šβ•β•β•β•β•šβ•β•β•β•β•β•β•   β•šβ•β•    β•šβ•β•β•β•β•β• β•šβ•β•β•β•β•β•β• β•šβ•β•β•β•β•β• β•šβ•β•β•β•β•β• β•šβ•β•     β•šβ•β•β•β•β•β•β•
                                                                                               
 A C I N E T O B A C T E R   B A U M A N N I I   G E N O M I C   S U R V E I L L A N C E   T O O L
                              S C I E N C E Β· P R E C I S I O N Β· I M P A C T

A species-specific computational pipeline for rapid, comprehensive Acinetobacter baumannii outbreak investigation and resistance gene tracking

Complete genomic surveillance in a single automated workflow β€” from FASTA to actionable insights.

πŸ“– Documentation β€’ ⚑ Quick Start β€’ ✨ Features β€’ πŸ”§ Installation β€’ πŸš€ Usage β€’ πŸ“Š Output β€’ πŸ€– AI-Enhanced Analysis β€’ πŸ“ˆ Performance


🦠 AcinetoScope

Conda Version, Conda Downloads Platform License Python Version Bioconda Last updated

GitHub Stars GitHub Issues Research Use

πŸ“‹ Table of Contents


🎯 Overview

AcinetoScope is an automated, comprehensive bioinformatics pipeline designed specifically for the genomic analysis of Acinetobacter baumannii, a critical multidrug-resistant nosocomial pathogen. It integrates fragmented analysis stepsβ€”quality control, dual-scheme MLST typing, capsule (K/O) typing, antimicrobial resistance (AMR) detection, virulence profiling, and environmental co-selection marker screeningβ€”into a single, cohesive workflow.

🌍 The Problem

  • Fragmented Workflows: Analyzing A. baumannii requires manual chaining of 6+ separate tools (MLST, Kaptive, AMRFinder, ABRicate, etc.).
  • Interpretation Barrier: Raw outputs from multiple tools need manual integration to form an epidemiological narrative.
  • Time-Consuming Process: Generalist pipelines like Bactopia perform unnecessary steps, slowing down outbreak response.

πŸ’‘ Our Solution

AcinetoScope delivers:

  • βœ… End-to-End Automation: One command runs the entire analysis from raw FASTA to a consolidated report.
  • βœ… A. baumannii-Optimized: Pre-configured with species-specific databases and typing schemes (Pasteur & Oxford MLST, Kaptive K/O loci).
  • βœ… Actionable Intelligence: Features a four-tier risk flagging system (CRITICAL, HIGH, MEDIUM, LOW) and gene-centric tracking to highlight high-threat resistance determinants.
  • βœ… Speed & Efficiency: Benchmarked 40-75% faster than generalist pipelines by eliminating redundant processing.
  • βœ… AI-Ready Outputs: Generates interactive HTML reports designed for seamless exploration with modern AI browser extensions.

Perfect for: Hospital outbreak investigation, public health surveillance, antimicrobial resistance (AMR) research, and clinical microbiology.


✨ Key Features

πŸ”¬ Core Analytical Modules

Module 🎯 Purpose πŸ“Š Key Outputs ⚑ Speed
Quality Control Assembly metric assessment & integrity checking N50/N75, GC%, ambiguous bases, homopolymers <1 min
Dual MLST Typing Phylogenetic classification via Pasteur & Oxford schemes Sequence Type (ST), International Clone (IC), novel alleles <1 min
Capsule (K/O) Typing Polysaccharide capsule & lipooligosaccharide typing via Kaptive K type, O type, locus coverage/identity 1-2 min
AMR Detection Comprehensive resistance gene detection with AMRFinderPlus Carbapenemases, ESBLs, colistin/tigecycline resistance, 4-tier risk flags 2-3 min
Multi-DB Screening Screening across 11 curated databases via ABRicate Virulence factors, plasmid replicons, metal/biocide resistance, stress regulators 3-4 min
Integrated Reporting Synthesizes all results into gene-centric, interactive reports HTML dashboard, JSON/CSV/TSV exports, pattern discovery Instant

🚨 Innovations for A. baumannii Surveillance

  • Four-Tier Risk Flagging: Automatically categorizes resistance genes (e.g., OXA-23 β†’ CRITICAL; qacE β†’ ENVIRONMENTAL).
  • Environmental Co-Selection Tracking: Uniquely screens for heavy metal (czc, mer, ars) and biocide (qac) resistance genes.
  • Gene-Centric Analysis Framework: Tracks each resistance gene across all samples for clear visualization of dissemination patterns.
  • Cross-Genome Pattern Discovery: Automatically identifies high-risk combinations (e.g., carbapenemase + last-resort resistance).
  • Dynamic Resource Allocation: Uses Python's psutil to optimize parallel processing for any system (from laptops to HPC clusters).

⚑ Quick Start

Install in 60 Seconds

# Method 1: Conda (Recommended - handles all dependencies)
conda create -n acinetoscope -c conda-forge -c bioconda acinetoscope -y
conda activate acinetoscope

# Method 2: From source
git clone https://github.com/bbeckley-hub/acinetoscope.git
cd acinetoscope
pip install -e .

Run Your First Analysis

# Analyze a single genome
acinetoscope -i sample.fasta -o results/

# Batch process multiple genomes
acinetoscope -i "*.fasta" -o batch_results --threads 8

# Analysis complete! Explore the interactive report.
# The main report is in: batch_results/GENIUS_ACINETOBACTER_ULTIMATE_REPORTS/

πŸ”§ Installation

System Requirements

Resource Minimum Recommended
CPU Cores 2 4+
RAM 4 GB 8 GB
Storage 2 GB 10 GB+
OS Linux, macOS, WSL2 Linux

Step-by-Step Installation

  1. Install Miniconda (if needed):
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh
    # Follow prompts, then:
    source ~/.bashrc
  2. Install AcinetoScope:
    conda create -n acinetoscope -c conda-forge -c bioconda acinetoscope
    conda activate acinetoscope
  3. (Recommended) Update ABRicate Databases:
    abricate --setupdb

πŸš€ Usage Guide

Basic Command

acinetoscope -i <INPUT_PATTERN> -o <OUTPUT_DIR> [OPTIONS]

Example: acinetoscope -i "genomes/*.fna" -o my_analysis -t 4

Command Line Options

Flag Description Default
-i, --input Input FASTA file(s). Supports wildcards (*.fna). Required
-o, --output Directory for all results. Required
-t, --threads Number of CPU threads to use. Auto-detected
--skip-qc Skip the quality control module. False
--skip-summary Skip the final integrated report generation. False
--mlst-scheme Specify scheme: pasteur, oxford, or both. both
--verbose Print detailed progress messages. False

Input Requirements

  • Format: Assembled genomes in FASTA format (.fna, .fasta, .fa, .fn).
  • Content: The pipeline is designed exclusively for Acinetobacter baumannii genomes.

πŸ“Š Output Structure

AcinetoScope generates a well-organized directory structure. A typical run on 10 genomes produces over 500 files, systematically organized as shown in your tree output. The key directories are:

analysis/
β”œβ”€β”€ fasta_qc_results/                 # Quality control reports per sample
β”œβ”€β”€ PASTEUR_MLST/                     # MLST results (Pasteur scheme)
β”œβ”€β”€ OXFORD_MLST/                      # MLST results (Oxford scheme)
β”œβ”€β”€ kaptive_results/                  # Capsule (K) and lipooligosaccharide (O) typing
β”œβ”€β”€ acineto_amrfinder_results/        # AMR gene detection with risk stratification
β”œβ”€β”€ acineto_abricate_results/         # Multi-database screening (11 DBs)
└── GENIUS_ACINETOBACTER_ULTIMATE_REPORTS/  # 🎯 FINAL INTEGRATED REPORT
    β”œβ”€β”€ genius_acinetobacter_ultimate_report.html  # Interactive HTML Dashboard
    β”œβ”€β”€ genius_acinetobacter_ultimate_report.json  # Complete data (machine-readable)
    └── *.csv files for easy import into spreadsheets

πŸ” Analytical Modules

1. Quality Control Module

Validates input FASTA files using A. baumannii-specific thresholds (GC% 35-65%, ambiguous bases <5%). Generates per-sample and summary reports.

2. Dual MLST Typing Module

Runs the mlst tool with both Pasteur and Oxford schemes. Identifies International Clones (IC1-IC10) and novel alleles.

3. Capsule Typing Module

Utilizes Kaptive with A. baumannii-specific databases (ab_k, ab_o) for high-resolution capsule (K) and lipooligosaccharide (O) typing.

4. AMR Detection Module

Leverages NCBI's AMRFinderPlus to identify and categorize resistance determinants, applying the four-tier risk flagging system (CRITICAL, HIGH, MEDIUM, LOW).

5. Comprehensive Screening Module

Executes ABRicate across 11 databases (CARD, ResFinder, VFDB, PlasmidFinder, BacMet2, etc.) to detect virulence factors, plasmid replicons, and environmental co-selection markers.

6. Integrated Reporting Module

The GENIUS Acinetobacter Reporter synthesizes all results into a gene-centric interactive HTML report, enabling cross-sample pattern discovery and high-risk combination identification.


πŸ€– AI-Enhanced Analysis

AcinetoScope's interactive HTML reports are designed for AI augmentation. You can use browser AI extensions (ChatGPT, Claude, Gemini, Copilot) to interrogate your genomic data conversationally.

🎯 Guiding Principle: AI Assists, Experts Decide!

Use AI as a collaborative tool to explore data and generate hypotheses, but always apply your domain expertise for final interpretation and clinical decisions.

πŸš€ Step-by-Step AI Integration

  1. Generate Your Report: Run AcinetoScope to create the genius_acinetobacter_ultimate_report.html.
  2. Install an AI Assistant: Add a browser extension like ChatGPT for Chrome, Claude, or Microsoft Copilot to your browser.
  3. Open and Explore:
    • Open the HTML report in your browser.
    • Use the AI extension's "ask about this page" feature or simply copy-paste findings into the chat.
  4. Ask Powerful Questions:
    • "Summarize the primary resistance threat in these isolates."
    • "Is there evidence of an outbreak cluster based on the ST and capsule types?"
    • "Which samples carry both a carbapenemase and a colistin resistance mechanism? List them."
    • "Generate a concise clinical risk assessment for infection control."
    • "Suggest antibiotic treatment options based on this resistance profile."

πŸ’‘ Example AI Interaction

Your Prompt: "I'm looking at the AcinetoScope report for 10 ICU isolates. The summary says 8 are ST2 and carry OXA-23. What's the immediate implication?"

AI Assistant Response: "This suggests a likely clonal outbreak of a high-risk carbapenem-resistant A. baumannii (CRAB) strain in your ICU. Immediate actions should include: 1) Reviewing infection control practices, 2) Patient cohorting, 3) Environmental decontamination focus. The co-presence of [other genes from report] indicates limited treatment options, necessitating an infectious disease consult."


πŸ“ˆ Performance & Validation

⚑ Benchmarking vs. Bactopia

AcinetoScope is purpose-built for A. baumannii, making it significantly faster than generalist pipelines.

System Config Pipeline Time (50 genomes) Speed Gain
2 CPU, 8 GB RAM AcinetoScope ~2.5 hours β‰ˆ40% faster
Bactopia ~4 hours
16 CPU, 16 GB RAM AcinetoScope ~35 minutes β‰ˆ75% faster
Bactopia ~2.5 hours

βœ… Validation Results

Tested on 10 well-characterized reference genomes, AcinetoScope achieved 100% accuracy in:

  • MLST typing (Pasteur & Oxford schemes)
  • Capsule (K/O) type determination
  • Identification of known antimicrobial resistance genes

πŸ”¬ Key Findings from Clinical Genomes

Analysis of 50 clinical genomes revealed:

  • High-Risk Clones: Dominance of International Clone II (ST2, 46%) and I (ST1, 26%).
  • Critical Resistance: 56% harbored carbapenemase genes (bla_OXA-23/66); 96% co-harbored carbapenemase + last-resort resistance genes.
  • Environmental Persistence: 100% contained heavy metal resistance genes; 58% had the biocide resistance gene qacEdelta1.

πŸ“š Citation

If you use AcinetoScope in your research, please cite:

Beckley, B. et al. (2026). AcinetoScope: A Tool for Enhanced Outbreak Investigation and Resistance Gene Tracking in Acinetobacter baumannii. [Journal Name], [Volume], [Pages]. DOI: [To be assigned].

@software{acinetoscope2026,
  title = {AcinetoScope: A Tool for Enhanced Outbreak Investigation and Resistance Gene Tracking in Acinetobacter baumannii},
  author = {Beckley, Brown and Amarh, Vincent and Lopes, Bruno Silvester and Kakah, John and Kwarteng, Alexander and Olalekan, Adesola and Afeke, Innocent},
  year = {2026},
  publisher = {GitHub},
  url = {https://github.com/bbeckley-hub/acinetoscope}
}

πŸ‘₯ Authors & Contact

  • Brown Beckley (Corresponding Author) – Department of Medical Biochemistry, University of Ghana Medical School. Email: brownbeckley94@gmail.com
  • Vincent Amarh – University of Ghana Medical School
  • Bruno Silvester Lopes – Teesside University, UK
  • John Kakah – University of Ghana Medical School
  • Alexander Kwarteng – Kwame Nkrumah University of Science and Technology (KNUST)
  • Adesola Olalekan – University of Lagos
  • Innocent Afeke – University of Health and Allied Sciences

GitHub Repository: https://github.com/bbeckley-hub/acinetoscope


πŸ“„ License

This project is licensed under the MIT License. See the LICENSE file in the repository for details.


⭐ Star us on GitHub if you find AcinetoScope useful!

Transforming complex genomic data into clear, actionable insights for tackling AMR. 🧬✨

About

AcinetoScope A Unified Pipeline for Comprehensive Acinobacter baumannii & Species Complex Genotyping & Epidemiology

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published