DevOps/SRE Engineer with 3+ years of experience building fault-tolerant infrastructure and automating CI/CD processes. Achieved 99.9% uptime over 6 months with Proxmox VE HA cluster. Practical experience with ML/Computer Vision infrastructure (Frigate, YOLO, face recognition). SRE approach: runbooks, RTO/RPO metrics, monitoring, automation-first mindset. Reduced operational toil from 40% to 10% through systematic automation.
Infrastructure: Linux (Debian/Ubuntu), Proxmox VE/PBS HA cluster (3 nodes), Docker, KVM/LXC, HP iLO
Automation: Bash, systemd, GitHub Actions, CI/CD
Databases: PostgreSQL (replication, backups)
Networking: nginx (reverse-proxy, TLS termination), VLAN segmentation, DHCP, DNS (AdGuard Home), KeenDNS, Let's Encrypt, NTP, iptables/firewall
Storage: ZFS, Ceph
Monitoring: Dashboards (CPU/RAM/Disk/GPU), alerting (Telegram Bot), centralized logging, capacity planning
ML/Computer Vision: Frigate, YOLO, Doubletake, Compreface, Docker-based model serving, MQTT integration
API & Integrations: REST API, OAuth2, Modbus/TCP, Zigbee2MQTT, Telegram Bot API
Security: SSL/TLS automation, secrets management, firewall policies
Hands-on practice in lab environment: Kubernetes/Helm, Terraform, Ansible, Prometheus/Grafana, GitLab CI, Python (Flask/FastAPI)
OAuth2 infrastructure automation for HeadHunter API:
- β CI/CD via GitHub Actions: ShellCheck linting, nginx validation, Docker build/push to GHCR
- β Automated token refresh via systemd timers (every 6 hours, 100% automation)
- β Reverse-proxy setup: nginx + KeenDNS + Let's Encrypt (90-day cert auto-renewal)
- β Infrastructure as Code: all configs version-controlled in Git
- β Container versioning: SemVer tagging (1.0.0, latest) published to GHCR
- β Architecture documentation: Mermaid diagrams with detailed component interaction
Production-ready ML infrastructure for real-time video analytics:
- β Frigate + YOLO object detection in Docker (8+ video streams, 99.9% uptime)
- β Doubletake + Compreface face recognition (trained on 150+ photos, accuracy 98%, recall 95%)
- β ML optimization: precision improved from 75% to 92%, false positives reduced by 85%
- β Automated model serving via Docker + Python + REST API + MQTT
- β GPU monitoring and inference metrics tracking
- β Full ML lifecycle implementation: data preparation β training β serving β monitoring β optimization
Technologies: Frigate, YOLO, Doubletake, Compreface, FaceNet, MTCNN, Docker, MQTT, Python, REST API, TensorFlow Lite, GPU inference
- β Reduced deployment time by 96%: 2 days β 2 hours via Docker containerization and CI/CD
- β Reduced operational toil by 75%: from 40% β 10% through automation of routine tasks
- β 99.9% infrastructure uptime over the last 6 months (Proxmox VE HA cluster, 3 nodes)
- β RTO < 30 minutes for critical VM recovery (verified via quarterly test-restores)
- β RPO < 1 hour via snapshot management and incremental backups
- β Network load reduced by 15% through AdGuard Home DNS filtering
- β ML model optimization: precision 75% β 92%, false positives reduced by 85%
- β CI/CD pipeline: ShellCheck (100% compliance) + automated Docker builds to GHCR
- β 100% automation of OAuth2 token refresh (manual every 2 weeks β systemd timer every 6 hours)
Proxmox VE HA Cluster:
- 3-node cluster with automatic failover and quorum configuration
- 15+ virtual machines (Ubuntu/Debian)
- 20+ LXC containers for service isolation
- ZFS/Ceph storage backend
- Daily incremental + weekly full backups via Proxmox Backup Server
- HP iLO remote management for physical servers
Network Architecture:
- 10+ VLAN segments (management, production, DMZ, guest)
- 50+ managed devices with DHCP reservations and MAC binding
- nginx reverse-proxy with TLS termination
- AdGuard Home DNS filtering (15% network load reduction)
- NTP synchronization (<10ms accuracy) for distributed logging
Observability:
- Custom dashboards: CPU/RAM/Disk/GPU utilization, network metrics, service health
- Telegram alerting: CPU > 80%, Disk > 90%, service downtime
- Centralized logging with 30-day hot / 90-day cold retention
- Capacity planning based on trend analysis
Click to expand
flowchart TB
subgraph infra["π¦ OAuth2 Infrastructure (This repository)"]
direction TB
Nginx[π nginx<br/>HTTP:80β:8000]
subgraph automation["βοΈ Automation"]
direction LR
Timer[β±οΈ systemd<br/>Every 6h]
Script[π refresh.sh<br/>Token refresh]
end
TestServer[π§ͺ test-8000.py<br/>Test server]
TokenStore[(π Token Storage<br/>/var/lib/hh-token/token.json)]
end
subgraph prod["π€ Production App (Separate project)"]
direction TB
TelegramBot[π± Telegram Bot<br/>HH job search]
FlaskApp[π Flask Application<br/>OAuth callback handler at /callback]
TelegramBot -.->|Project<br/>hh-oauth2-keendns-nginx-systemd| FlaskApp
end
subgraph external["External"]
HHAPI[π’ HH OAuth2 API<br/>api.hh.ru]
end
%% Connections / Component interactions
%% Main Flow (OAuth):
Nginx -->|1. Proxy :8000| FlaskApp
FlaskApp -->|2. OAuth callback| HHAPI
FlaskApp -->|3. Saves initial tokens| TokenStore
%% Production Flow:
FlaskApp -->|4. Reads tokens| TokenStore
TelegramBot <-->|5. API requests| HHAPI
%% Token Refresh Flow:
Timer -.->|6. Trigger| Script
Script -->|7. Refreshes tokens| HHAPI
Script -->|8. Saves new tokens| TokenStore
%% Testing:
TestServer -->|9. Testing alternative| Nginx
%% Styling
style Nginx fill:#2E8B57,color:#FFFFFF,stroke:#1a5f3a,stroke-width:2px
style Timer fill:#FFA500,color:#000000,stroke:#cc8400,stroke-width:2px
style Script fill:#FF8C00,color:#FFFFFF,stroke:#cc7000,stroke-width:2px
style TestServer fill:#DAA520,color:#000000,stroke:#b8860b,stroke-width:2px
style TokenStore fill:#9370DB,color:#FFFFFF,stroke:#6a4db8,stroke-width:2px
style TelegramBot fill:#4682B4,color:#FFFFFF,stroke:#1565c0,stroke-width:2px
style FlaskApp fill:#4169E1,color:#FFFFFF,stroke:#2a4ba8,stroke-width:2px
style HHAPI fill:#DC143C,color:#FFFFFF,stroke:#a00000,stroke-width:2px
- π’ Green β infrastructure components (nginx)
- π Orange β automation (systemd timer, Bash scripts)
- π‘ Gold β testing/auxiliary tools (test-8000.py)
- π£ Purple β data storage (Token Storage)
- π΅ Blue β production application (Telegram Bot, Flask App)
- π΄ Red β external APIs (HeadHunter)
-
hh-oauth2-keendns-nginx-systemd
Automated OAuth2 infrastructure for HeadHunter API with reverse-proxy nginx and systemd timers -
do6pbln9l
DevOps/SRE Engineer | Linux, Docker, CI/CD | π Remote
πΌ HH.ru: DevOps/SRE Resume
π¬ Preferred contact method: Apply via HH or email from resume
π Working from home | π Open to DevOps/SRE opportunities

