Skip to content

Systematic validation of AlphaFold2 and Boltz1 protein structure predictions against crystallographic references. 6,820 structures across 20 complexes validated with MolProbity and PoseBusters geometry analysis. Includes Rosetta relaxation protocol benchmarks.

License

Notifications You must be signed in to change notification settings

dreamlessx/Protein_Data_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Protein Structure Validation Pipeline

Systematic benchmarking of AlphaFold2 and Boltz1 predictions against crystallographic reference structures. This repository contains validation scripts, analysis pipelines, and comprehensive results for 6,820 protein structures derived from 20 experimentally resolved complexes.

Overview

Machine learning methods for protein structure prediction have achieved remarkable accuracy, yet rigorous validation against established structural biology metrics remains essential. This project evaluates predicted structures using wwPDB validation criteria and geometry analysis tools standardized across the structural biology community.

Key Findings

Method Ramachandran Favored Rotamer Favored MolProbity Score
Experimental (X ray) 97.8% 90.5% 1.18
AlphaFold2 95.2% 93.8% 1.79
Boltz1 98.9% 98.4% 1.11

Boltz1 demonstrates superior backbone geometry with near ideal Ramachandran distributions. AlphaFold2 shows competitive performance on composite quality metrics. Rosetta relaxation protocols improve geometric quality across all prediction methods.

Dataset

20 Protein Complexes

PDB identifiers: 1AK4, 1AKJ, 1AVX, 1AY7, 1AZS, 1BUH, 1BVN, 1E6E, 1EFN, 1EWY, 1EXB, 1F51, 1FCC, 1GHQ, 1GLA, 1HCF, 1JPS, 1K74, 1VFB, 2I25

Structure Categories

Category Count Description
Experimental 20 X ray crystallographic reference structures
AlphaFold2 100 Five ranked predictions per complex
Boltz1 100 Five model predictions per complex
Relaxed 6,600 Six Rosetta protocols applied to all structures

Rosetta Relaxation Protocols

Protocol Energy Function Coordinate Space
normal_ref15 REF15 Torsion
normal_beta Beta Nov16 Torsion
cartesian_ref15 REF15 Cartesian
cartesian_beta Beta Nov16 Cartesian
dualspace_ref15 REF15 Dualspace
dualspace_beta Beta Nov16 Dualspace

Validation Metrics

MolProbity Analysis

Standard wwPDB validation metrics computed via the MolProbity toolchain:

Metric Description Ideal Value
Ramachandran Favored Backbone dihedrals in favored regions >98%
Ramachandran Outliers Backbone dihedrals in disallowed regions <0.2%
Rotamer Favored Sidechain conformations in favored rotamers >98%
Clashscore Steric overlaps per 1000 atoms <10
MolProbity Score Composite quality metric (lower is better) <2.0
C beta Deviations Deviations from ideal C beta positions 0

Geometry Validation

Structural integrity checks adapted from the PoseBusters methodology:

Check Description
Backbone Connectivity Peptide bond distances within tolerance
Bond Lengths C N peptide bonds 1.18 to 1.48 angstroms
Bond Angles N CA C angles 100 to 120 degrees
Aromatic Planarity Ring flatness RMSD below 0.1 angstroms
Peptide Planarity Omega angles in cis or trans conformations
Chirality L amino acid stereochemistry verification
Steric Clashes Van der Waals overlap detection

Repository Structure

Protein_Analysis/
├── proteins/                      # Structure files (not tracked)
│   └── {PDB_ID}/
│       ├── {PDB_ID}.pdb          # Experimental reference
│       ├── AF/                    # AlphaFold predictions
│       ├── Boltz/                 # Boltz1 predictions
│       ├── {protocol}/            # Relaxed experimental structures
│       └── relax/AF|Boltz/        # Relaxed predictions
├── scripts/
│   ├── posebusters.py            # Geometry validation pipeline
│   ├── molprobity_extended.py    # Extended MolProbity metrics
│   └── run_validation_parallel.py # MolProbity validation pipeline
├── validation_results/
│   ├── posebusters_results.csv   # Boolean pass/fail per check
│   ├── posebusters_raw.csv       # Raw metric values
│   ├── molprobity_full.csv       # Complete MolProbity output
│   └── molprobity_extended.csv   # C beta and omega distributions
└── requirements.txt              # Python dependencies

Installation

Python Environment

# Create conda environment
conda create -n protein_validation python=3.11
conda activate protein_validation

# Install dependencies
pip install -r requirements.txt

External Dependencies

MolProbity

MolProbity provides the validation tools used by the worldwide Protein Data Bank. Installation via conda is recommended.

conda install -c conda-forge cctbx-base

Documentation: https://github.com/rlabduke/MolProbity

Rosetta

Rosetta is required for energy scoring and structure relaxation. Academic licenses are available at no cost.

Download: https://www.rosettacommons.org/software/license-and-download

Reduce and Probe

Required for hydrogen placement and clash analysis.

# Via conda
conda install -c conda-forge reduce probe

Reduce: https://github.com/rlabduke/reduce Probe: https://github.com/rlabduke/probe

Python Dependencies

Package Version Purpose
pandas ≥2.0.0 Data manipulation
numpy ≥1.24.0 Numerical computing
scipy ≥1.10.0 Statistical analysis
statsmodels ≥0.14.0 Statistical modeling
scikit learn ≥1.3.0 Machine learning utilities
matplotlib ≥3.7.0 Visualization
seaborn ≥0.12.0 Statistical visualization
plotly ≥5.15.0 Interactive plots
tabulate ≥0.9.0 Table formatting
jinja2 ≥3.1.0 Template rendering
openpyxl ≥3.1.0 Excel export
tqdm ≥4.65.0 Progress bars

Usage

Run Full Validation Pipeline

# MolProbity validation (parallel execution)
python scripts/run_validation_parallel.py

# Extended geometry metrics
python scripts/molprobity_extended.py

# PoseBusters style validation
python scripts/posebusters.py --workers 12

Command Line Options

# PoseBusters validation
python scripts/posebusters.py --help

Options:
  --no-energy     Skip Rosetta energy scoring
  --limit N       Process first N structures only
  -j, --workers   Number of parallel workers (default: CPU count)

Results

Validation results are stored in validation_results/ as CSV files suitable for statistical analysis. Per protein summaries are written to proteins/{PDB_ID}/analysis/.

Output Files

File Contents
posebusters_results.csv Boolean pass/fail for each validation check
posebusters_raw.csv Raw numerical values for all metrics
molprobity_full.csv Complete MolProbity analysis
molprobity_extended.csv C beta deviation and omega angle statistics

References

Validation Methods

Williams CJ, Headd JJ, Moriarty NW, et al. (2018). MolProbity: More and better reference data for improved all atom structure validation. Protein Science 27:293-315.

Buttenschoen M, Morris GM, Deane CM. (2024). PoseBusters: AI based docking methods fail to generate physically valid ligand poses or generalise to novel sequences. Chemical Science 15:3130-3139.

Structure Prediction

Jumper J, Evans R, Pritzel A, et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596:583-589.

Wohlwend J, et al. (2024). Boltz1: Democratizing Biomolecular Interaction Modeling. bioRxiv.

Energy Functions

Alford RF, Leaver-Fay A, Jeliazkov JR, et al. (2017). The Rosetta All Atom Energy Function for Macromolecular Modeling and Design. Journal of Chemical Theory and Computation 13:3031-3048.

License

MIT License. See LICENSE file for details.

Author

Mudit Agar

About

Systematic validation of AlphaFold2 and Boltz1 protein structure predictions against crystallographic references. 6,820 structures across 20 complexes validated with MolProbity and PoseBusters geometry analysis. Includes Rosetta relaxation protocol benchmarks.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages