Skip to content

Adaptive Estimation for Weakly Dependent Functional Time Series

License

Notifications You must be signed in to change notification settings

hmaissoro/adaptiveFTS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

286 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

adaptiveFTS

Version
License


Description

adaptiveFTS provides tools for adaptive estimation procedures for weakly dependent functional time series. Developed by Maissoro et al. (2024, 2025), it includes:

  • Estimators for local regularity parameters
  • Mean function estimation
  • Autocovariance function estimation
  • An adaptive Best Linear Unbiased Predictor (BLUP)

This package leverages the computational efficiency of Rcpp and RcppArmadillo for high-performance functional data analysis.


Table of Contents

  1. Features
  2. Installation
  3. Usage
  4. Examples
  5. Contributing
  6. License

Features

  • Adaptive estimators for functional time series analysis.
  • Efficient computation using Rcpp and RcppArmadillo.
  • Implements methodologies from cutting-edge research (2024, 2025).
  • Tools for predicting functional time series via BLUP.

Installation

From GitHub

To install the development version of adaptiveFTS, use the devtools package:

# Install devtools if not already installed
install.packages("devtools")

# Install adaptiveFTS from GitHub
devtools::install_github("hmaissoro/adaptiveFTS")

Usage

Load the package and start using its functions:

# Load adaptiveFTS
library(adaptiveFTS)

# Example of mean function estimation

## Load data
data("data_far")

## Estimate risk function for the mean
dt_mean_risk <- estimate_mean_risk(
  data = data_far, idcol = "id_curve", tcol = "tobs", ycol = "X",
  t = c(1/4, 1/2, 3/4), bw_grid = NULL,
  kernel_name = "epanechnikov"
)

(Refer to the examples section for detailed code snippets and use cases.)


Examples

Example of mean function estimation

# Load data
data("data_far")

# Estimate risk function for the mean
dt_mean_risk <- estimate_mean_risk(
  data = data_far, idcol = "id_curve", tcol = "tobs", ycol = "X",
  t = c(1/4, 1/2, 3/4), bw_grid = NULL,
  kernel_name = "epanechnikov"
)

# Visualize mean risk at various observation points
dt_dcast <- data.table::dcast(data = dt_mean_risk, formula = h ~ t, value.var = "mean_risk")
manipulateWidget::combineWidgets(
  list = list(
    dygraphs::dygraph(
      data = dt_dcast[, list(h, "t = 0.25" = `0.25`)],
      main = "t = 0.25", xlab = "h", ylab = "Risk Function"),
    dygraphs::dygraph(
      data = dt_dcast[, list(h, "t = 0.5" = `0.5`)],
      main = "t = 0.5", xlab = "h", ylab = "Risk Function"),
    dygraphs::dygraph(
      data = dt_dcast[, list(h, "t = 0.75" = `0.75`)],
      main = "t = 0.75", xlab = "h", ylab = "Risk Function")
  ),
  nrow = 3
)

# Estimate mean function with optimal bandwidths
dt_mean <- estimate_mean(
  data = data_far, idcol = "id_curve", tcol = "tobs", ycol = "X",
  t = c(1/4, 1/2, 3/4), bw_grid = seq(0.005, 0.15, len = 45),
  kernel_name = "epanechnikov"
)

# Display rounded estimates of the mean function
DT::datatable(data = dt_mean[, lapply(.SD, function(X) round(X, 3))])

Contributing

We welcome contributions! Follow these steps:

  1. Fork the repository: adaptiveFTS
  2. Clone your fork:
    git clone https://github.com/your-username/adaptiveFTS.git
  3. Create a feature branch:
    git checkout -b feature-name
  4. Commit your changes:
    git commit -m "Add feature description"
  5. Push the branch:
    git push origin feature-name
  6. Submit a pull request.

License

This package is licensed under the AGPL (>= 3) license. See the LICENSE file for more details.


Acknowledgements

  • Built using Rcpp and RcppArmadillo for efficient computation.
  • Inspired by methodologies developed in Maissoro et al. (2024, 2025).

References

  1. Hassan Maissoro, Valentin Patilea, and Myriam Vimond. Adaptive Estimation for Weakly Dependent Functional Time Series. 2024. Available at arXiv:2403.13706.

  2. Hassan Maissoro, Valentin Patilea, and Myriam Vimond. Adaptive prediction for Functional Times Series. 2024. Work in progress.


About

Adaptive Estimation for Weakly Dependent Functional Time Series

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages