- Github repository: https://github.com/isayevlab/aimnetcentral/
- Documentation https://isayevlab.github.io/aimnetcentral/
- Accurate and Versatile: AIMNet2 excels at modeling neutral, charged, organic, and elemental-organic systems.
- Flexible Interfaces: Use AIMNet2 through convenient calculators for popular simulation packages like ASE and PySisyphus.
- Flexible Long-Range Interactions: Optionally employ the Damped-Shifted Force (DSF) or Ewald summation Coulomb models for accurate calculations in large or periodic systems.
AIMNet2 requires Python 3.11 or 3.12.
AIMNet2 works on CPU out of the box. For GPU acceleration:
- CUDA GPU: Install PyTorch with CUDA support from pytorch.org
- compile_mode: Requires CUDA for ~5x MD speedup (see Performance Optimization)
Example PyTorch installation with CUDA 12.4:
pip install torch --index-url https://download.pytorch.org/whl/cu124| Model | Elements | Description |
|---|---|---|
aimnet2 |
H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, I | wB97M-D3 (default) |
aimnet2_b973c |
H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, I | B97-3c functional |
aimnet2_2025 |
H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, I | B97-3c + improved intermolecular interactions |
aimnet2nse |
H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, I | Open-shell chemistry |
aimnet2pd |
H, B, C, N, O, F, Si, P, S, Cl, Se, Br, Pd, I | Palladium-containing systems |
Each model has ensemble members (append _0 to _3). Ensemble averaging recommended for production use.
Install from PyPI:
pip install aimnetAIMNet2 provides optional extras for different use cases:
ASE Calculator (for atomistic simulations with ASE):
pip install "aimnet[ase]"PySisyphus Calculator (for reaction path calculations):
pip install "aimnet[pysis]"Training (for model training and development):
pip install "aimnet[train]"All Features:
pip install "aimnet[ase,pysis,train]"For contributors, use uv for fast dependency management:
git clone https://github.com/isayevlab/aimnetcentral.git
cd aimnetcentral
make install
source .venv/bin/activatefrom aimnet.calculators import AIMNet2Calculator
# Load a pre-trained model
calc = AIMNet2Calculator("aimnet2")
# Prepare input
data = {
"coord": coordinates, # Nx3 array
"numbers": atomic_numbers, # N array
"charge": 0.0,
}
# Run inference
results = calc(data, forces=True)
print(results["energy"], results["forces"])The calculator returns a dictionary with the following keys:
| Key | Shape | Description |
|---|---|---|
energy |
(,) or (B,) |
Total energy in eV |
charges |
(N,) or (B, N) |
Atomic partial charges in e |
forces |
(N, 3) or (B, N, 3) |
Atomic forces in eV/A (if requested) |
hessian |
(N, 3, N, 3) |
Second derivatives (if requested) |
stress |
(3, 3) |
Stress tensor for PBC (if requested) |
B = batch size, N = number of atoms
With aimnet[ase] installed:
from ase.io import read
from aimnet.calculators import AIMNet2ASE
atoms = read("molecule.xyz")
atoms.calc = AIMNet2ASE("aimnet2")
energy = atoms.get_potential_energy()
forces = atoms.get_forces()For periodic systems, provide a unit cell:
data = {
"coord": coordinates,
"numbers": atomic_numbers,
"charge": 0.0,
"cell": cell_vectors, # 3x3 array in Angstrom
}
results = calc(data, forces=True, stress=True)Configure electrostatic interactions for large or periodic systems:
# Damped-Shifted Force (DSF) - recommended for periodic systems
calc.set_lrcoulomb_method("dsf", cutoff=15.0, dsf_alpha=0.2)
# Ewald summation - for accurate periodic electrostatics
calc.set_lrcoulomb_method("ewald", ewald_accuracy=1e-8)For molecular dynamics simulations, use compile_mode for ~5x speedup:
calc = AIMNet2Calculator("aimnet2", compile_mode=True)Requirements:
- CUDA GPU required
- Not compatible with periodic boundary conditions
- Best for repeated inference on similar-sized systems
With aimnet[train] installed:
aimnet train --config my_config.yaml --model aimnet2.yamlThe AIMNet2Calculator automatically selects the optimal strategy based on system size (nb_threshold, default 120 atoms) and hardware:
- Dense Mode (O(N²)): Used for small molecules on GPU. Input is kept in 3D batched format
(B, N, 3). No neighbor list is computed; the model uses a fully connected graph for maximum parallelism. - Sparse Mode (O(N)): Used for large systems or CPU execution. Input is flattened to 2D
(N_total, 3)with an adaptive neighbor list. This ensures linear memory scaling.
In sparse mode, AIMNet2 uses an AdaptiveNeighborList that automatically resizes its buffer to maintain efficient utilization (~75%) while preventing overflows.
- Format: The neighbor list is stored as a 2D integer matrix
nbmatof shape(N_total, max_neighbors). Each rowicontains the indices of atoms neighboring atomi. - Padding: Rows with fewer neighbors than
max_neighborsare padded with the indexN_total(a dummy atom index). - Buffer Management: The buffer size
max_neighborsis always a multiple of 16 for memory alignment. It dynamically expands (by 1.5x) on overflow and shrinks if utilization drops significantly below the target, ensuring robust performance during MD simulations where density fluctuates.
Common development tasks using make:
make check # Run linters and code quality checks
make test # Run tests with coverage
make docs # Build and serve documentation
make build # Build distribution packagesIf you use AIMNet2 in your research, please cite the appropriate paper:
AIMNet2 (main model):
@article{aimnet2,
title={AIMNet2: A Neural Network Potential to Meet Your Neutral, Charged, Organic, and Elemental-Organic Needs},
author={Anstine, Dylan M and Zubatyuk, Roman and Isayev, Olexandr},
journal={Chemical Science},
volume={16},
pages={10228--10244},
year={2025},
doi={10.1039/D4SC08572H}
}AIMNet2-NSE: ChemRxiv preprint
AIMNet2-Pd: ChemRxiv preprint
See LICENSE file for details.