Skip to content

keboola/query-service-api-python-sdk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Keboola Query Service Python SDK

Python client for Keboola Query Service API.

Installation

pip install keboola-query-service

Quick Start

from keboola_query_service import Client

# Initialize client
# IMPORTANT: Use query.keboola.com (NOT connection.keboola.com)
# Don't append /api/v1 - the SDK handles routing automatically
client = Client(
    base_url="https://query.keboola.com",  # Query Service URL
    token="your-storage-api-token"          # Your Keboola Storage API token
)

# Execute a query
# - branch_id: Find in Keboola UI URL or via Storage API
# - workspace_id: Your workspace ID from Keboola
results = client.execute_query(
    branch_id="1261313",
    workspace_id="2950146661",
    statements=["SELECT * FROM my_table LIMIT 10"]
)

# Process results - one QueryResult per statement
for result in results:
    print("Columns:", [col.name for col in result.columns])
    print("Data:", result.data)

# Always close the client when done
client.close()

Finding Your IDs

  • branch_id: Found in the Keboola Connection URL (e.g., https://connection.keboola.com/admin/projects/123/... → branch is in the Storage API)
  • workspace_id: Go to Transformations → Workspace → Copy the workspace ID from URL or details
  • token: Settings → API Tokens → Create new token with appropriate permissions

Features

  • Sync and async support - Both synchronous and async (asyncio) APIs
  • Automatic retries - Configurable retry logic for transient failures
  • Job polling - Built-in exponential backoff for waiting on job completion
  • Streaming - NDJSON streaming for large result sets
  • Type hints - Full type annotations for IDE support

Usage

Basic Query Execution

from keboola_query_service import Client

with Client(base_url="https://query.keboola.com", token="...") as client:
    # Execute query and wait for results
    results = client.execute_query(
        branch_id="123",
        workspace_id="456",
        statements=[
            "SELECT * FROM orders WHERE date > '2024-01-01'",
            "SELECT COUNT(*) FROM customers"
        ],
        transactional=True  # Execute in a transaction
    )

    # Results is a list - one QueryResult per statement
    orders_result = results[0]
    count_result = results[1]

    print(f"Columns: {[c.name for c in orders_result.columns]}")
    print(f"Rows: {len(orders_result.data)}")

Using Context Manager (Recommended)

from keboola_query_service import Client

# Context manager automatically closes the client
with Client(base_url="https://query.keboola.com", token="...") as client:
    results = client.execute_query(
        branch_id="1261313",
        workspace_id="2950146661",
        statements=["SELECT 1 as test"]
    )
    print(results[0].data)  # [['1']]

Async Usage

import asyncio
from keboola_query_service import Client

async def main():
    async with Client(base_url="https://query.keboola.com", token="...") as client:
        results = await client.execute_query_async(
            branch_id="1261313",
            workspace_id="2950146661",
            statements=["SELECT 1 as test"]
        )
        print(results[0].data)

asyncio.run(main())

Low-Level API

For more control, use the low-level methods:

# Submit job without waiting
job_id = client.submit_job(
    branch_id="123",
    workspace_id="456",
    statements=["SELECT * FROM large_table"]
)

# Check status
status = client.get_job_status(job_id)
print(f"Status: {status.status}")  # created, enqueued, processing, completed, failed

# Wait for completion
final_status = client.wait_for_job(job_id, max_wait_time=300)

# Get results for specific statement
result = client.get_job_results(job_id, final_status.statements[0].id)

Streaming Large Results

# Stream results as NDJSON for large datasets
for row in client.stream_results(job_id, statement_id):
    process_row(row)

Error Handling

from keboola_query_service import (
    Client,
    AuthenticationError,
    ValidationError,
    JobError,
    TimeoutError,
)

try:
    results = client.execute_query(...)
except AuthenticationError:
    print("Invalid token")
except ValidationError as e:
    print(f"Invalid request: {e.message}")
except JobError as e:
    print(f"Query failed: {e.message}")
    for stmt in e.failed_statements:
        print(f"  Statement {stmt['id']}: {stmt['error']}")
except TimeoutError as e:
    print(f"Job {e.job_id} timed out")

Query History

history = client.get_query_history(
    branch_id="123",
    workspace_id="456",
    page_size=100
)

for stmt in history.statements:
    print(f"{stmt.query_job_id}: {stmt.query[:50]}... ({stmt.status})")

Configuration

client = Client(
    base_url="https://query.keboola.com",
    token="your-token",
    timeout=120.0,           # Request timeout (seconds)
    connect_timeout=10.0,    # Connection timeout (seconds)
    max_retries=3,           # Max retry attempts
    user_agent="my-app/1.0", # Custom user agent
)

API Reference

Client Methods

Method Description
execute_query() Submit query, wait for completion, return results
submit_job() Submit query job without waiting
get_job_status() Get current job status
get_job_results() Get results for a statement
wait_for_job() Wait for job to complete
cancel_job() Cancel a running job
get_query_history() Get query history for workspace
stream_results() Stream results as NDJSON

All methods have async variants with _async suffix.

Models

  • JobStatus - Job status with statements
  • QueryResult - Query results with columns and data
  • Statement - Individual SQL statement info
  • Column - Column metadata
  • JobState - Enum: created, enqueued, processing, completed, failed, canceled
  • StatementState - Enum: waiting, processing, completed, failed, canceled, notExecuted

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages