Skip to content

lankning/Super-Resolution

Repository files navigation

介绍

本仓库将对一些论文中提出的SR算法进行总结和复现,使用的推理框架是TensorFlow

Github文档地址:https://lankning.github.io/Super-Resolution/

模型

  • SRCNN 2014
  • FSRCNN 2016
  • ESPCN 2016
  • VESPCN 2017 (Only Notes)
  • DUF 2018
  • FALSR 2019(Only Notes)
  • TGA 2020(Only Notes)
  • One-Stage STVSR(Partly codes)
  • FSR 2021

环境

tensorFlow-gpu>=2.2, <=2.5

jupyter notebook
opencv-python
pillow
matplotlib

使用步骤

  1. 如果你有conda,建议使用conda创建一个新的环境,并安装TensorFlow等必要的库
conda create -n tf22 python=3.7
conda activate tf22
conda install tensorflow-gpu=2.2
pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple/
  1. 使用jupyter运行data_prepare.ipynb文件,在本文件夹打开终端,输入
jupyter notebook
  1. SRCNN为例,运行SRCNN.ipynb文件是重新训练模型,运行LR2HR.ipynb文件是将低清视频通过模型转为高清。仍然在jupyter中打开,运行。

文件组织

目录树

  • data
  • Re-Implementated Model
    • model
      • model.h5
    • static
      • paper.pdf
      • images.png
    • SRCNN.ipynb: train SRCNN model
    • LR2HR.ipynb: transfer LR frames to HR video using trained model
    • utils.ipynb: ipynb version of utils
    • utils.py: python module for use
    • README.md
  • data_prepare.ipynb: prepare data from video
  • utils.py: python module for use
  • README.md
  • requirements.txt

数据准备

  • get frame from video
  • transfer HR images to LR images

数据文件夹

  • Low-resolution: eg. ./data/train_data4x/: The scaled frames by 4x which will be used in train stage eg. ./data/train_data2x/: The scaled frames by 2x which will be used in train stage
  • Original-resolution: ./data/train_data/: The HR frames which will be used in train stage coresponde to ./data/x_train_data?x/

作者

朱文康

如果你有问题,欢迎联系我。我的邮箱是:wenkang_zhu@whu.edu.cn,乐意回复。

谢谢。

参考文献

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published