Skip to content

lsying009/ISTASTrack

Repository files navigation

ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking

The official implementation for ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking.

Usage

Data Preparation

Download the training datasets FE240hz, VisEvent, COESOT and FELT. We modified FE108py to convert raw events in .aedat format into T event frames. Please modify ./prepare_data/stack_event.py to customize for different datasets.

Path Setting

Run the following command to set paths (see run.sh):

dataset=fe240
model=istastrack

python tracking/create_default_local_file.py --workspace_dir . --data_dir /data/MyData/ --save_dir ./output/${model}_${dataset} \

You can also modify paths by these two files:

./lib/train/admin/local.py  # paths for training
./lib/test/evaluation/local.py  # paths for testing

Training

Dowmload the pretrained OSTrack and Spikingformer checkpoints and put them under ./pretrained/. Run ./tracking/train.py

NCCL_P2P_LEVEL=NVL python tracking/train.py --script ${model} --config ${dataset} --save_dir ./output/${model}_${dataset} --mode multiple --nproc_per_node 2 \
2>&1 | tee -a train.log

Testing

Run ./tracking/test.py to generate predicted results and run ./tracking/analysis_results.py to evaluate results, as follows in run.sh:

CUDA_VISIBLE_DEVICES=0,1 python tracking/test.py ${model} ${dataset} --dataset ${dataset} --threads 8 --num_gpus 2 --debug 0

python tracking/analysis_results.py --model_name ${model} --dataset ${dataset}  --parameter_name ${dataset}

Note that our analysis_results exclude invalid frames where the target disappears, whereas we found that some other benchmarks discard these frames during evaluation but still include them when averaging results.

Acknowledgment

Citation

About

ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published