A professional PACS-style medical imaging application that uses deep learning to analyze chest CT scans and detect potential malignancies.
- AI Diagnosis - 4-class classification: Adenocarcinoma, Large Cell, Normal, Squamous Cell
- Professional UI - Dark PACS-style interface with glassmorphism effects
- Real-time Analysis - Upload CT scans and get instant AI-powered insights
- Confidence Visualization - Color-coded confidence bars for all classes
- Modern Design - Collapsible sidebar, floating controls, thumbnail navigation
| Layer | Technology |
|---|---|
| Frontend | React 19, Vite, Tailwind CSS v4 |
| Backend | FastAPI, Python 3.9+ |
| AI Model | TensorFlow/Keras 3.10, CNN (VGG-based) |
| Styling | Custom CSS with CSS variables, Glassmorphism |
- Python 3.9+
- Node.js 18+
- npm
git clone https://github.com/muhammadtihame/Cancer-Detection_Using_CNN.git
cd Cancer-Detection_Using_CNNcd backend
pip install -r requirements.txt
python -m uvicorn main:app --reload --port 8000cd frontend
npm install
npm run devNavigate to http://localhost:5173 in your browser.
chest-ct-diagnostic/
├── backend/
│ ├── main.py # FastAPI server
│ └── requirements.txt # Python dependencies
├── frontend/
│ ├── src/
│ │ ├── App.jsx # Main React component
│ │ ├── index.css # PACS-style dark theme
│ │ └── main.jsx # React entry point
│ ├── index.html # HTML template
│ └── package.json # npm dependencies
├── model/
│ └── chest_ct_model.h5 # Pre-trained CNN model
├── labels.txt # Class labels
└── README.md
| Method | Endpoint | Description |
|---|---|---|
GET |
/ |
Health check |
GET |
/health |
Detailed health with model status |
POST |
/predict |
Analyze CT scan image |
curl -X POST "http://localhost:8000/predict" \
-F "file=@ct_scan.jpg"{
"diagnosis": "Adenocarcinoma",
"confidence": 87.3,
"all_predictions": {
"Adenocarcinoma": 87.3,
"Large Cell": 8.2,
"Normal": 3.1,
"Squamous Cell": 1.4
}
}This application is for educational and research purposes only. AI predictions should not replace professional medical diagnosis. Always consult qualified healthcare providers for medical decisions.
Made by Mohammad Tihame
MIT License - feel free to use and modify for your projects.
