Tweedieverse is an R package to test associations between omics data and phenotypes (metadata). We keep the source code under Tweedieverse source code. Here we provide examples and tutorials on configuring the runs, interpreting results, and combining figures for scientific reports and manuscripts.
To cite Tweedieverse in publications, please use:
Mallick, H, Chatterjee, S, Chowdhury, S, Chatterjee, S, Rahnavard, A, Hicks, SC. Differential expression of single-cell RNA-seq data using Tweedie models. Statistics in Medicine. 2022; 41( 18): 3492- 3510. doi:10.1002/sim.9430
To cite the Tweedieverse software, please use:
Mallick, H; Rahnavard, A (2021). Tweedieverse - A Unified Statistical Framework for Differential Analysis of Multi-omics Data. R package, https://github.com/himelmallick/Tweedieverse.
- Applications
library(Tweedieverse)
# use your path
setwd("~/path-to-your-working-directory/")
metadata <- read.table(
'data//metadata.txt',
sep = '\t',
header = TRUE,
fill = FALSE,
comment.char = "" ,
check.names = FALSE,
row.names = 1
)
metabolites <- read.delim(
'data/metabolites.txt',
sep = '\t',
header = TRUE,
fill = T,
comment.char = "" ,
check.names = F,
row.names = 1
)
### Run Tweedieverse
# imputation strategy
metabolites[is.na(metabolites)] <- 0 #min(metabolites, na.rm = T)/2.0
Tweedieverse::Tweedieverse(metabolites,
metadata,
'analysis/my_meatbolites_Tweedieverse',
max_significance = 0.1,
plot_heatmap = T,
plot_scatter = T,
standardize = F)