Skip to content

treqs/roar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

roar

Run Observation & Artifact Registration

roar tracks data artifacts and execution steps in ML pipelines, enabling reproducibility and lineage queries. roar tracking happens automagically by observing your commands as they run, capturing essential context without requiring you to define a pipeline explicitly.

By identifying files based on their actual content rather than their names, it ensures you can always trace a result back to the exact inputs and code that produced it. This gives you reliable reproducibility and a clear history of your artifacts, all derived naturally from your workflow.

While roar captures your work locally, connecting it to a GLaaS (Global Lineage-as-a-Service) server like glaas.ai allows you to publish your lineage graphs to a shared global registry for easy visualization and collaboration. Now your team can search for any artifact by its hash to see exactly how it was made and generate the precise commands needed to reproduce it on another machine.

Installation

pip install roar-cli
# or with uv
uv pip install roar-cli

Requires Python 3.10+ and Linux (x86_64 or aarch64) for full functionality.

Platform Support

Platform roar run Other commands
Linux x86_64 Full support Full support
Linux aarch64 Full support Full support
macOS Not supported Full support
Windows Not supported Full support

The roar run command uses a native tracer binary that requires Linux. Other commands work on all platforms.

Development Installation

# Clone the repository
git clone https://github.com/treqs/roar.git
cd roar

# Install in development mode (automatically builds tracer if Rust is installed)
uv pip install -e ".[dev]"
# or without uv
pip install -e ".[dev]"

Quick Start

# Initialize roar in your project
cd my-ml-project
roar init

# Run commands with provenance tracking
roar run python preprocess.py --input data.csv --output features.parquet
roar run python train.py --data features.parquet --output model.pt
roar run python evaluate.py --model model.pt --output metrics.json

Commands

roar init

Initialize roar in the current directory. Creates a .roar/ directory to store the local database and a config.toml with default settings.

roar init           # Initialize, prompt for gitignore
roar init -y        # Initialize and auto-add to gitignore
roar init -n        # Initialize without modifying gitignore

roar run <command>

Run a command with provenance tracking. Roar captures:

  • Files read and written
  • Git commit and branch
  • Execution time and exit code
  • Command arguments
roar run python train.py --epochs 10 --lr 0.001
roar run ./scripts/preprocess.sh
roar run torchrun --nproc_per_node=4 train.py

# Re-run a previous DAG step
roar run @2                    # Re-run DAG node 2
roar run @2 --epochs=10        # Re-run with parameter override

roar reproduce <hash>

Reproduce an artifact by tracing its lineage.

# Show the reproduction plan (preview)
roar reproduce abc123de

# Run full reproduction
roar reproduce abc123de --run

# Run without prompts
roar reproduce abc123de --run -y

# Include system packages during setup
roar reproduce abc123de --run --package-sync

# Show all required packages (no truncation)
roar reproduce abc123de --list-requirements

Full reproduction clones the git repository, creates a virtual environment, installs recorded packages, and runs the pipeline steps.

roar build <command>

Run a build step with provenance tracking. Build steps run before pipeline steps during reproduction.

# Compile native extensions
roar build maturin develop --release
roar build make -j4

# Install local packages
roar build pip install -e .

Use for setup that should run before the main pipeline (compiling, installing).

roar auth

Manage GLaaS authentication.

roar auth register    # Show SSH public key for registration
roar auth test        # Test connection to GLaaS server
roar auth status      # Show current auth status

To register with GLaaS:

  1. Run roar auth register to display your public key
  2. Sign up at https://glaas.ai where you can paste your public key
  3. Run roar auth test to verify

roar config

View or set configuration options.

roar config list
roar config get <key>
roar config set <key> <value>

Run roar config list to see all available options with descriptions. Common options:

Key Default Description
output.track_repo_files false Include repo files in provenance
output.quiet false Suppress written files report
filters.ignore_system_reads true Ignore /sys, /etc, /sbin reads
filters.ignore_package_reads true Ignore installed package reads
filters.ignore_torch_cache true Ignore torch/triton cache
filters.ignore_tmp_files true Ignore /tmp files
glaas.url https://api.glaas.ai GLaaS server URL
glaas.web_url https://glaas.ai GLaaS web UI URL
registration.omit.enabled true Enable secret filtering
hash.primary blake3 Primary hash algorithm
logging.level warning Log level (debug, info, warning, error)

roar dag

Display the pipeline DAG for the current session.

roar dag                  # Compact view with colors
roar dag --expanded       # Show all executions including reruns
roar dag --json           # Machine-readable JSON output
roar dag --show-artifacts # Show intermediate artifacts

roar env

Manage persistent environment variables injected into roar run and roar build.

roar env set FOO bar      # Set FOO=bar
roar env get FOO          # Print value of FOO
roar env list             # List all env vars
roar env unset FOO        # Remove FOO

roar log

Display recent job execution history.

roar log                  # Show recent job history

roar register

Register artifact lineage with GLaaS.

roar register model.pt              # Register model lineage
roar register --dry-run model.pt    # Preview without registering
roar register -y model.pt           # Skip confirmation prompt

roar reset

Start a fresh session. Previous session data is preserved in the database.

roar reset                # Reset with confirmation prompt
roar reset -y             # Reset without confirmation

roar show

Show session, job, or artifact details.

roar show                          # Show active session overview
roar show @1                       # Show details for step 1
roar show @B1                      # Show details for build step 1
roar show a1b2c3d4                 # Show job by UID
roar show ./output/model.pkl       # Show artifact by path

roar status

Show a summary of the active session.

roar status

roar pop

Remove the most recent job from the active session. Useful for undoing a mistaken roar run or correcting the pipeline before registration.

roar pop              # Pop with confirmation prompt
roar pop -y           # Pop without confirmation (skip prompt)

What it does:

  • Removes the last job from the session history
  • Deletes output artifacts created by that job (unless they're packages/system files)
  • Does not affect the original input files

Concepts

Artifacts

Data files tracked by their content hash (BLAKE3). The same file content always has the same hash, regardless of filename or location.

Jobs

Recorded executions that consume input artifacts and produce output artifacts. Each roar run creates a job record.

Collections

Named groups of artifacts, used for downloaded datasets or upload bundles.

Workflow Example

# Record your pipeline
roar run python preprocess.py
roar run python train.py --epochs 10
roar run python evaluate.py

# Later, reproduce an artifact
roar reproduce <model-hash> --run

Git Integration

Roar automatically captures git metadata:

  • Current commit hash
  • Branch name
  • Repository path

Data Storage

All data is stored locally in .roar/roar.db (SQLite). The database includes:

  • Artifact hashes and metadata
  • Job records with inputs/outputs
  • Hash cache for performance

Add .roar/ to your .gitignore (roar offers to do this during roar init).

GLaaS Server

Roar can register artifacts and jobs with a GLaaS (Global Lineage-as-a-Service) server using the roar register command.

Server Setup

# Install with server dependencies
uv pip install -e ".[server]"
# or without uv
pip install -e ".[server]"

# Run the server
glaas-server

# Or with custom host/port
GLAAS_HOST=0.0.0.0 GLAAS_PORT=8080 glaas-server

The server provides:

  • REST API for artifact and job registration
  • Web UI at / with artifact and job browsers
  • Search and filtering by command, GPU, file type, etc.

Client Configuration

# Set the GLaaS server URL
roar config set glaas.url http://localhost:8000

# Show your SSH key (copy to GLaaS web UI)
roar auth register

# Test authentication
roar auth test

Development

Prerequisites

Setup

# Install dev dependencies (automatically builds tracer if Rust is installed)
uv pip install -e ".[dev]"

Running Quality Checks

# Linting
ruff check .

# Format check
ruff format --check

# Type checking
mypy roar

# Run all checks at once
ruff check . && ruff format --check && mypy roar

Running Tests

# Run all tests (excluding those requiring a live GLaaS server)
pytest tests/ -v -m "not glaas and not live_glaas"

# Run with coverage
pytest tests/ -v --cov=roar --cov-report=term-missing -m "not glaas and not live_glaas"

# Run tests in parallel
pytest tests/ -v -n auto -m "not glaas and not live_glaas"

# Run only unit tests (fast)
pytest tests/ -v -m "not integration and not e2e and not glaas and not live_glaas"

License

Apache 2.0