The only normed division algebras over β are β, β, β, and π.
#61 on Parcly-Taxel's 100 theorems list for Mathlib.
Sorry-free Lean 4 + Mathlib.
Both in Hurwitz.lean:
theorem hurwitz_dimension
{A : Type*} [NonAssocRing A] [Module β A] [IsScalarTower β A A] [SMulCommClass β A A]
[FiniteDimensional β A]
(N : QuadraticForm β A) (hcomp : β x y : A, N (x * y) = N x * N y)
(hone : N 1 = 1) (hnd : β x : A, N x = 0 β x = 0) :
Module.finrank β A β ({1, 2, 4, 8} : Set β)
theorem hurwitz_classification
{A : Type*} [NonAssocRing A] [Module β A] [IsScalarTower β A A] [SMulCommClass β A A]
[FiniteDimensional β A]
(N : QuadraticForm β A) (hcomp : β x y, N (x * y) = N x * N y)
(hone : N 1 = 1) (hnd : β x, N x = 0 β x = 0) :
Nonempty (A β+* β) β¨ Nonempty (A β+* β) β¨
Nonempty (A β+* β[β]) β¨ Nonempty (A β+* π[β])| File | Lines | |
|---|---|---|
β Hurwitz.lean |
93 | the two main theorems |
Hurwitz/Octonion.lean |
325 | octonion algebra, normSq, finrank = 8 |
CompositionAlgebra/Basic.lean |
284 | polar form, conjugation, alternative laws |
CompositionAlgebra/CayleyDicksonDoubling.lean |
472 | doubling argument: dim >= 2, 4, 8 |
CompositionAlgebra/DimensionBound.lean |
1545 | dim in {1,2,4,8} |
CompositionAlgebra/IsomReal.lean |
47 | dim 1 => iso R |
CompositionAlgebra/IsomComplex.lean |
94 | dim 2 => iso C |
CompositionAlgebra/IsomQuaternion.lean |
327 | dim 4 => iso H |
CompositionAlgebra/IsomOctonion.lean |
797 | dim 8 => iso O |