Skip to content

trevyn/hurwitz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

The only normed division algebras over ℝ are ℝ, β„‚, ℍ, and 𝕆.

#61 on Parcly-Taxel's 100 theorems list for Mathlib.

Sorry-free Lean 4 + Mathlib.

Both in Hurwitz.lean:

theorem hurwitz_dimension
    {A : Type*} [NonAssocRing A] [Module ℝ A] [IsScalarTower ℝ A A] [SMulCommClass ℝ A A]
    [FiniteDimensional ℝ A]
    (N : QuadraticForm ℝ A) (hcomp : βˆ€ x y : A, N (x * y) = N x * N y)
    (hone : N 1 = 1) (hnd : βˆ€ x : A, N x = 0 β†’ x = 0) :
    Module.finrank ℝ A ∈ ({1, 2, 4, 8} : Set β„•)

theorem hurwitz_classification
    {A : Type*} [NonAssocRing A] [Module ℝ A] [IsScalarTower ℝ A A] [SMulCommClass ℝ A A]
    [FiniteDimensional ℝ A]
    (N : QuadraticForm ℝ A) (hcomp : βˆ€ x y, N (x * y) = N x * N y)
    (hone : N 1 = 1) (hnd : βˆ€ x, N x = 0 β†’ x = 0) :
    Nonempty (A ≃+* ℝ) ∨ Nonempty (A ≃+* β„‚) ∨
    Nonempty (A ≃+* ℍ[ℝ]) ∨ Nonempty (A ≃+* 𝕆[ℝ])
File Lines
⭐ Hurwitz.lean 93 the two main theorems
Hurwitz/Octonion.lean 325 octonion algebra, normSq, finrank = 8
CompositionAlgebra/Basic.lean 284 polar form, conjugation, alternative laws
CompositionAlgebra/CayleyDicksonDoubling.lean 472 doubling argument: dim >= 2, 4, 8
CompositionAlgebra/DimensionBound.lean 1545 dim in {1,2,4,8}
CompositionAlgebra/IsomReal.lean 47 dim 1 => iso R
CompositionAlgebra/IsomComplex.lean 94 dim 2 => iso C
CompositionAlgebra/IsomQuaternion.lean 327 dim 4 => iso H
CompositionAlgebra/IsomOctonion.lean 797 dim 8 => iso O

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages