Skip to content
/ dgir Public

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models (MICCAI 2025)

Notifications You must be signed in to change notification settings

uncbiag/dgir

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch implementation of Diffusion Guided Image Registration (DGIR), supporting both 2D and 3D registration.

Dependencies

You'll also need the weights from guided_diffusion:

# Clone guided_diffusion as a submodule or install separately
cd guided_diffusion
wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt

Quick Start

Basic 2D Registration

from diffusion_registration import Config, DiffusionRegistrationNet
from diffusion_registration.training import Trainer
from diffusion_registration.data import create_data_loaders

# Load configuration
config = Config('config/config.yaml')
config.model.dimension = 2
config.data.data_root = '/path/to/your/data'

# Create data loaders
train_dataset, test_dataset = create_data_loaders(config)

# Initialize network
net = DiffusionRegistrationNet(config)
net = net.to(config.device)

# Train
trainer = Trainer(net, config)
trainer.train(train_dataset, test_dataset)

Command Line Training

# Train 2D registration
python scripts/train_2d.py --config config/config.yaml

# Train 3D registration
python scripts/train_3d.py --config config/config_3d.yaml 

About

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models (MICCAI 2025)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages