Skip to content

Cargo transportation planning algorithm implementing deterministic logistic search with several heuristics

Notifications You must be signed in to change notification settings

vysotin/cargo_planning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of Planning Search algorithm

Synopsis

This project includes skeletons for the classes and functions needed to solve deterministic logistics planning problems for an Air Cargo transport system using a planning search agent. With progression search algorithms like those in the navigation problem from lecture, optimal plans for each problem will be computed. Unlike the navigation problem, there is no simple distance heuristic to aid the agent. This implements domain-independent heuristics.

Environment requirements

  • Python 3.4 or higher
  • Starter code includes a copy of companion code from the Stuart Russel/Norvig AIMA text.

Project Details

Part 1 - Planning problems

READ: Stuart Russel and Peter Norvig text:

"Artificial Intelligence: A Modern Approach" 3rd edition chapter 10 or 2nd edition Chapter 11 on Planning, available on the AIMA book site sections:

  • The Planning Problem
  • Planning with State-space Search

Part 2 - Domain-independent heuristics

READ: Stuart Russel and Peter Norvig text

"Artificial Intelligence: A Modern Approach" 3rd edition chapter 10 or 2nd edition Chapter 11 on Planning, available on the AIMA book site section:

GIVEN: classical PDDL problems

All problems are in the Air Cargo domain. They have the same action schema defined, but different initial states and goals.

  • Air Cargo Action Schema:
Action(Load(c, p, a),
	PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
	EFFECT: ¬ At(c, a) ∧ In(c, p))
Action(Unload(c, p, a),
	PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
	EFFECT: At(c, a) ∧ ¬ In(c, p))
Action(Fly(p, from, to),
	PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
	EFFECT: ¬ At(p, from) ∧ At(p, to))
  • Problem 1 initial state and goal:
Init(At(C1, SFO) ∧ At(C2, JFK) 
	∧ At(P1, SFO) ∧ At(P2, JFK) 
	∧ Cargo(C1) ∧ Cargo(C2) 
	∧ Plane(P1) ∧ Plane(P2)
	∧ Airport(JFK) ∧ Airport(SFO))
Goal(At(C1, JFK) ∧ At(C2, SFO))
  • Problem 2 initial state and goal:
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL) 
	∧ At(P1, SFO) ∧ At(P2, JFK) ∧ At(P3, ATL) 
	∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3)
	∧ Plane(P1) ∧ Plane(P2) ∧ Plane(P3)
	∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL))
Goal(At(C1, JFK) ∧ At(C2, SFO) ∧ At(C3, SFO))
  • Problem 3 initial state and goal:
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL) ∧ At(C4, ORD) 
	∧ At(P1, SFO) ∧ At(P2, JFK) 
	∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3) ∧ Cargo(C4)
	∧ Plane(P1) ∧ Plane(P2)
	∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL) ∧ Airport(ORD))
Goal(At(C1, JFK) ∧ At(C3, JFK) ∧ At(C2, SFO) ∧ At(C4, SFO))

Methods and functions in my_air_cargo_problems.py

  • AirCargoProblem.get_actions method including load_actions and unload_actions sub-functions
  • AirCargoProblem.actions defined actions
  • AirCargoProblem.result calculate result
  • AirCargoProblem.h_ignore_preconditions omputes heuristic function
  • air_cargo_p2 function for creating input for a test
  • air_cargo_p3 function for creating input for a test

Planning Graph with automatic heuristics is implemented in my_planning_graph.py with help of following methods:

  • PlanningGraph.add_action_level
  • PlanningGraph.add_literal_level
  • PlanningGraph.inconsistent_effects_mutex
  • PlanningGraph.interference_mutex
  • PlanningGraph.competing_needs_mutex
  • PlanningGraph.negation_mutex
  • PlanningGraph.inconsistent_support_mutex
  • PlanningGraph.h_levelsum
  • Use the run_search script for your data collection: from the command line type python run_search.py -h to learn more.

Why are we setting the problems up thics way?

Progression planning problems can be solved with graph searches such as breadth-first, depth-first, and A*, where the nodes of the graph are "states" and edges are "actions". A "state" is the logical conjunction of all boolean ground "fluents", or state variables, that are possible for the problem using Propositional Logic. For example, we might have a problem to plan the transport of one cargo, C1, on a single available plane, P1, from one airport to another, SFO to JFK. state space In this simple example, there are five fluents, or state variables, which means our state space could be as large as 2to5. Note the following:

  • While the initial state defines every fluent explicitly, in this case mapped to TTFFF, the goal may be a set of states. Any state that is True for the fluent At(C1,JFK) meets the goal.
  • Even though PDDL uses variable to describe actions as "action schema", these problems are not solved with First Order Logic. They are solved with Propositional logic and must therefore be defined with concrete (non-variable) actions and literal (non-variable) fluents in state descriptions.
  • The fluents here are mapped to a simple string representing the boolean value of each fluent in the system, e.g. TTFFTT...TTF. This will be the state representation in the AirCargoProblem class and is compatible with the Node and Problem classes, and the search methods in the AIMA library.

Why a Planning Graph?

The planning graph is somewhat complex, but is useful in planning because it is a polynomial-size approximation of the exponential tree that represents all possible paths. The planning graph can be used to provide automated admissible heuristics for any domain. It can also be used as the first step in implementing GRAPHPLAN, a direct planning algorithm that you may wish to learn more about on your own (but we will not address it here).

Planning Graph example from the AIMA book Planning Graph

Examples and Testing:

  • The planning problem for the "Have Cake and Eat it Too" problem in the book has been implemented in the example_have_cake module as an example.
  • The tests directory includes unittest test cases to evaluate implementations. From the root directory command line:
    • python -m unittest tests.test_my_air_cargo_problems
    • python -m unittest tests.test_my_planning_graph
  • The run_search script is provided for gathering metrics for various search methods on any or all of the problems and should be used for this purpose.

About

Cargo transportation planning algorithm implementing deterministic logistic search with several heuristics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages